Tác động của việc bổ sung vitamin A đến chức năng tuyến giáp và độ nhạy insulin: Ý nghĩa của các deiodinase và phosphoenolpyruvate carboxykinase trên chuột Wistar đực

Springer Science and Business Media LLC - Tập 61 Số 8 - Trang 4091-4105 - 2022
Samar R. Saleh1, Rania Abdel-Hamid Zaki1, Rabab Hassan1, Mohamed A. Elkersh1, Mohamed M. El‐Sayed1, Alshimaa A Abd Elmoneam1
1Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt

Tóm tắt

Tóm tắt Mục đích

Vitamin A là một chất dinh dưỡng thiết yếu với nhiều chức năng sinh học quan trọng. Nghiên cứu hiện tại đã điều tra tác động của các liều vitamin A palmitate khác nhau tại các khoảng thời gian khác nhau đến hormone tuyến giáp và các chỉ số glycemic.

Phương pháp

Những con chuột đực đã được cho ăn vitamin A palmitate với các liều khác nhau (0, 0.7, 1.5, 3, 6, và 12 mg/kg, đường uống) và các mẫu được thu thập tại các khoảng thời gian khác nhau là 2, 4 và 6 tuần. Các mức vitamin A, hormone tuyến giáp (T3, T4 và TSH), deiodinase (Dio1 và Dio3), các chỉ số glycemic (mức insulin trong máu và mức glucose lúc đói, HOMA IR và HOMA β), protein liên kết retinol 4 (RBP4) và enzym gluconeogenic phosphoenolpyruvate carboxykinase (PEPCK) đã được đo lường.

Kết quả

Các phát hiện cho thấy rằng việc bổ sung vitamin A palmitate với liều cao trong thời gian dài dẫn đến tình trạng suy giáp (mức T3 và T4 thấp và mức TSH cao) cũng như sự gia tăng biểu hiện của Dio1 và Dio3. Hiệu ứng này liên quan đến mức glucose và insulin tăng cao, HOMA IR tăng và chỉ số HOMA B giảm. Ngoài ra, việc bổ sung vitamin A kéo dài đã làm tăng đáng kể mức RBP4, điều này đã tăng cường biểu hiện của PEPCK.

Kết luận

Liều cao vitamin A bổ sung làm tăng nguy cơ suy giáp, điều chỉnh độ nhạy insulin, và trong thời gian dài, làm gia tăng tỷ lệ mắc diabetes mellitus loại 2 liên quan đến stress oxy hóa và viêm gan.

Từ khóa


Tài liệu tham khảo

Gilbert C (2013) What is vitamin A and why do we need it? Commun Eye Health 26(84):65–65

Kedishvili NY (2016) Retinoic acid synthesis and degradation. Subcell Biochem 81:127–161

Huang Z, Liu Y, Qi G, Brand D, Zheng SG (2018) Role of Vitamin A in the immune system. J Clin Med. https://doi.org/10.3390/jcm7090258

Shimizu H, Tsubota T, Kanki K, Shiota G (2018) All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J Cell Physiol 233(1):607–616

Malivindi R et al (2018) Influence of all-trans retinoic acid on sperm metabolism and oxidative stress: Its involvement in the physiopathology of varicocele-associated male infertility. J Cell Physiol 233(12):9526–9537

Kawaguchi R, Zhong M, Kassai M, Ter-Stepanian M, Sun H (2015) Vitamin A transport mechanism of the multitransmembrane cell-surface receptor STRA6. Membranes (Basel) 5(3):425–453

Pullakhandam R, Palika R, Ghosh S, Reddy GB (2012) Contrasting effects of type 2 and type 1 diabetes on plasma RBP4 levels: the significance of transthyretin. IUBMB Life 64(12):975–982

Vieira M, Saraiva MJ (2014) Transthyretin: a multifaceted protein. Biomol Concepts 5(1):45–54

Chaker L et al (2016) Thyroid function and risk of type 2 diabetes: a population-based prospective cohort study. BMC Med 14(1):150

Kapadia KB, Bhatt PA, Shah JS (2012) Association between altered thyroid state and insulin resistance. J Pharmacol Pharmacother 3(2):156–160

Hussein MA, Fawzi M, Ibrahim A, Saif A (2018) Thyroid dysfunction and insulin resistance in patients with nonalcoholic fatty liver disease. Egypt J Intern Med 30(3):97–102

Vyakaranam S, Vanaparthy S, Nori S, Palarapu S, Bhongir AV (2014) Study of insulin resistance in subclinical hypothyroidism. Int J Health Sci Res 4(9):147–153

Garduño-Garcia Jde J et al (2015) Thyroid function is associated with insulin resistance markers in healthy adolescents with risk factors to develop diabetes. Diabetol Metab Syndr 7:16

Graham TE et al (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354(24):2552–2563

Janke J et al (2006) Retinol-binding protein 4 in human obesity. Diabetes 55(10):2805–2810

Yang Q et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362

Zhang Y, Li R, Chen W, Li Y, Chen G (2011) Retinoids induced Pck1 expression and attenuated insulin-mediated suppression of its expression via activation of retinoic acid receptor in primary rat hepatocytes. Mol Cell Biochem 355(1–2):1–8

Wolf G (2007) Serum retinol-binding protein: a link between obesity, insulin resistance, and type 2 diabetes. Nutr Rev 65(5):251–256

Onishi Y et al (2010) Fasting tests of insulin secretion and sensitivity predict future prediabetes in Japanese with normal glucose tolerance. J Diabetes Investig 1(5):191–195

Tappel A, Zalkin H (1960) Inhibition of lipid peroxidation in microsomes by vitamin E. Nature 185:35

Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

Zimmermann MB, Wegmüller R, Zeder C, Chaouki N, Torresani T (2004) The effects of vitamin A deficiency and vitamin A supplementation on thyroid function in goitrous children. J Clin Endocrinol Metab 89(11):5441–5447

Abbasalizad Farhangi M, Keshavarz S, Eshraghian M, Ostadrahimi A, Saboor-Yaraghi A-A (2012) The effect of vitamin A supplementation on thyroid function in premenopausal women. J Am Coll Nutr 31:268–274

Ma B et al (2022) Relationship of Vitamin A and thyroid function in individuals with obesity and after laparoscopic sleeve gastrectomy. Front Nutr. https://doi.org/10.3389/fnut.2022.824193

Zabetian-Targhi F, Mahmoudi MJ, Rezaei N, Mahmoudi M (2015) Retinol binding protein 4 in relation to diet, inflammation, immunity, and cardiovascular diseases. Adv Nutr 6(6):748–762

Cha JH, Yu QM, Seo JS (2016) Vitamin A supplementation modifies the antioxidant system in rats. Nutr Res Pract 10(1):26–32

Tanumihardjo SA et al (2016) Biomarkers of nutrition for development (BOND)-vitamin A review. J Nutr 146(9):1816S-S1848

Berry DC, Noy N (2012) Signaling by vitamin A and retinol-binding protein in regulation of insulin responses and lipid homeostasis. Biochim Biophys Acta 1821(1):168–176

Alapatt P et al (2013) Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). J Biol Chem 288(2):1250–1265

Chandna S, Bathla M (2011) Oral manifestations of thyroid disorders and its management. Indian J Endocrinol Metab 15(Suppl 2):S113–S116

Garcin H, Higueret P, Amoikon K (1984) Effect of a large dose of retinol or retinoic acid on the thyroid hormones in the rat. Ann Nutr Metab 28:92–100

Morley JE et al (1980) Effect of vitamin A on hypothalamo-pituitarythyroid axis. Am J Physiol 238:174–179

Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89

Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 116(10):2571–2579

Larsen JES, Kaplan MM (1981) Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 2(1):87–102

Kester MHA, Kuiper GGJM, Versteeg R, Visser TJ (2006) Regulation of type III Iodothyronine deiodinase expression in human cell lines. Endocrinology 147(12):5845–5854

Esfandiari A et al (1994) Induction of type III-deiodinase activity in astroglial cells by retinoids. Glia 11(3):255–261

Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE (2014) Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10(10):582–591

Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94(2):355–382

Al-bayati A, Al-Khateeb S (2021) The effects of thyroid hormones and their abnormalities on intestinal and hepatic glucose metabolism. Sch Int J Biochem. https://doi.org/10.36348/sijb.2021.v04i03.002

Fernández-Real JM, López-Bermejo A, Castro A, Casamitjana R, Ricart W (2006) Thyroid function is intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid subjects. J Clin Endocrinol Metab 91(9):3337–3343

Reinehr T, Stoffel-Wagner B, Roth CL (2008) Retinol-binding protein 4 and its relation to insulin resistance in obese children before and after weight loss. J Clin Endocrinol Metab 93(6):2287–2293

El-Sayed MM, Ghareeb DA, Talat HA, Sarhan EM (2013) High fat diet induced insulin resistance and elevated retinol binding protein 4 in female rats; treatment and protection with Berberis vulgaris extract and vitamin A. Pak J Pharm Sci 26(6):1189–1195

Sun L et al (2014) Elevated plasma retinol-binding protein 4 is associated with increased risk of type 2 diabetes in middle-aged and elderly Chinese adults. J Nutr 144(5):722–728

Kwanbunjan K et al (2018) Association of retinol binding protein 4 and transthyretin with triglyceride levels and insulin resistance in rural thais with high type 2 diabetes risk. BMC Endocr Disord 18(1):26

Mizobuchi Y et al (1998) Retinyl palmitate reduces hepatic fibrosis in rats induced by dimethylnitrosamine or pig serum. J Hepatol 29(6):933–943

Gronowska-Senger A, Burzykowska K, Przepiórka M (2010) Retinyl palmitate and oxidative stress reduction in rats. Roczniki Państwowego Zakładu Higieny 61:21–25

Wang G, Xiu P, Li F, Xin C, Li K (2014) Vitamin A supplementation alleviates extrahepatic cholestasis liver injury through Nrf2 activation. Oxid Med Cell Longev 2014:273692

Cha J-H, Yu Q-M, Seo J-S (2016) Vitamin A supplementation modifies the antioxidant system in rats. Nurs Res Pract 10(1):26–32

Petiz LL et al (2017) Vitamin A oral supplementation induces oxidative stress and suppresses IL-10 and HSP70 in skeletal muscle of trained rats. Nutrients 9(4):353

Kim M et al (2017) Serum vitamin A-related metabolite levels are associated with incidence of type 2 diabetes. Diabetes Metab 43(3):287–291

Hathcock JN et al (1990) Evaluation of vitamin A toxicity. Am J Clin Nutr 52(2):183–202

Penniston KL, Tanumihardjo SA (2006) The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 83(2):191–201

Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX (2012) Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 32(24):5103–5115

Iqbal S, Naseem I (2015) Role of vitamin A in type 2 diabetes mellitus biology: effects of intervention therapy in a deficient state. Nutrition 31(7–8):901–907

Norseen J et al (2012) Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol 32(10):2010–2019

Malik R, Hodgson H (2002) The relationship between the thyroid gland and the liver. QJM 95(9):559–569

Nollevaux MC et al (2006) Hypervitaminosis A-induced liver fibrosis: stellate cell activation and daily dose consumption. Liver Int 26(2):182–186