The impact of probabilistic feature cueing depends on the level of cue abstraction

Springer Science and Business Media LLC - Tập 234 Số 3 - Trang 685-694 - 2016
Pascasie L. Dombert1, Gereon R. Fink1,2, Simone Vossel1
1Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
2Department of Neurology, University Hospital Cologne, Cologne, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ansorge U, Becker SI (2012) Automatic priming of attentional control by relevant colors. Atten Percept Psychophys 74(1):83–104. doi: 10.3758/s13414-011-0231-6

Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning the value of information in an uncertain world. Nat Neurosci 10(9):1214–1221. doi: 10.1038/nn1954

Brown TL, Gore CL, Carr TH (2002) Visual attention and word recognition in Stroop color naming: is word recognition “automatic”? J Exp Psychol Gen 131(2):220–240

Daunizeau J, den Ouden HE, Pessiglione M, Kiebel SJ, Friston KJ, Stephan KE (2010a) Observing the observer (II): deciding when to decide. PLoS One 5(12):e15555. doi: 10.1371/journal.pone.0015555

Daunizeau J, den Ouden HE, Pessiglione M, Kiebel SJ, Stephan KE, Friston KJ (2010b) Observing the observer (I): meta-Bayesian models of learning and decision-making. PLoS One 5(12):e15554. doi: 10.1371/journal.pone.0015554

Egner T, Monti JM, Trittschuh EH, Wieneke CA, Hirsch J, Mesulam MM (2008) Neural integration of top-down spatial and feature-based information in visual search. J Neurosci 28(24):6141–6151. doi: 10.1523/JNEUROSCI.1262-08.2008

Ferrand L, Augustinova M (2014) Differential effects of viewing positions on standard versus semantic Stroop interference. Psychon Bull Rev 21(2):425–431. doi: 10.3758/s13423-013-0507-z

Geng JJ, Behrmann M (2005) Spatial probability as an attentional cue in visual search. Percept Psychophys 67(7):1252–1268

Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 19(3):496–512

Giessing C, Thiel CM, Rosler F, Fink GR (2006) The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability. Neuroscience 137(3):853–864. doi: 10.1016/j.neuroscience.2005.10.005

Labuschagne EM, Besner D (2015) Automaticity revisited: when print doesn’t activate semantics. Front Psychol 6:117. doi: 10.3389/fpsyg.2015.00117

Lacouture Y, Cousineau C (2008) How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutor Quant Methods Psychol 4:35–45

Landau AN, Elwan D, Holtz S, Prinzmetal W (2012) Voluntary and involuntary attention vary as a function of impulsivity. Psychon Bull Rev 19(3):405–411. doi: 10.3758/s13423-012-0240-z

Macaluso E, Doricchi F (2013) Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy. Front Hum Neurosci 7:685. doi: 10.3389/fnhum.2013.00685

MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109(2):163–203

Millar K (1983) Clinical trial design: the neglected problem of asymmetrical transfer in cross-over trials. Psychol Med 13(4):867–873

Muller HJ, Geyer T (2009) Dynamics of attentional control. Psychol Res 73(2):123–126. doi: 10.1007/s00426-008-0203-1

Muller HJ, Rabbitt PM (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15(2):315–330

Muller HJ, Tollner T, Zehetleitner M, Geyer T, Rangelov D, Krummenacher J (2010) Dimension-based attention modulates feed-forward visual processing. Acta Psychol (Amst) 135(2):117–122. doi: 10.1016/j.actpsy.2010.05.004 (discussion 133–119)

Neely JH, VerWys CA, Kahan TA (1998) Reading “glasses” will prime “vision”, but reading a pair of “glasses” will not. Mem Cognit 26(1):34–39

Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51(6):768–774

Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25

Rangelov D, Muller HJ, Zehetleitner M (2011) Dimension-specific intertrial priming effects are task-specific: evidence for multiple weighting systems. J Exp Psychol Hum Percept Perform 37(1):100–114. doi: 10.1037/a0020364

Riggio L, Kirsner K (1997) The relationship between central cues and peripheral cues in covert visual orientation. Percept Psychophys 59(6):885–899

Schenkluhn B, Ruff CC, Heinen K, Chambers CD (2008) Parietal stimulation decouples spatial and feature-based attention. J Neurosci 28(44):11106–11110. doi: 10.1523/JNEUROSCI.3591-08.2008

Soto D, Rotshtein P, Hodsoll J, Mevorach C, Humphreys GW (2012) Common and distinct neural regions for the guidance of selection by visuoverbal information held in memory: converging evidence from fMRI and rTMS. Hum Brain Mapp 33(1):105–120. doi: 10.1002/hbm.21196

Stankevich BA, Geng JJ (2014) Reward associations and spatial probabilities produce additive effects on attentional selection. Atten Percept Psychophys. doi: 10.3758/s13414-014-0720-5

Theeuwes J (2013) Feature-based attention: it is all bottom-up priming. Philos Trans R Soc Lond B Biol Sci 368(1628):20130055. doi: 10.1098/rstb.2013.0055

Theeuwes J, Van der Burg E (2007) The role of spatial and nonspatial information in visual selection. J Exp Psychol Hum Percept Perform 33(6):1335–1351. doi: 10.1037/0096-1523.33.6.1335

Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Location- or feature-based targeting of peripheral attention. Neuroimage 14(1 Pt 1):37–47. doi: 10.1006/nimg.2001.0790

Vossel S, Bauer M, Mathys C, Adams RA, Dolan RJ, Stephan KE, Friston KJ (2014a) Cholinergic stimulation enhances Bayesian belief updating in the deployment of spatial attention. J Neurosci 34(47):15735–15742. doi: 10.1523/JNEUROSCI.0091-14.2014

Vossel S, Mathys C, Daunizeau J, Bauer M, Driver J, Friston KJ, Stephan KE (2014b) Spatial attention, precision, and Bayesian inference: a study of saccadic response speed. Cereb Cortex 24(6):1436–1450. doi: 10.1093/cercor/bhs418

Whelan R (2008) Effective analysis of reaction time data. Psychol Rec 58(3):475–482