The impact of population size on the evolution of asexual microbes on smooth versus rugged fitness landscapes

Springer Science and Business Media LLC - Tập 9 - Trang 1-10 - 2009
Andreas Handel1, Daniel E Rozen2
1Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, USA
2University of Manchester, Manchester, UK

Tóm tắt

It is commonly thought that large asexual populations evolve more rapidly than smaller ones, due to their increased rate of beneficial mutations. Less clear is how population size influences the level of fitness an asexual population can attain. Here, we simulate the evolution of bacteria in repeated serial passage experiments to explore how features such as fitness landscape ruggedness, the size of the mutational target under selection, and the mutation supply rate, interact to affect the evolution of microbial populations of different sizes. We find that if the fitness landscape has many local peaks, there can be a trade-off between the rate of adaptation and the potential to reach high fitness peaks. This result derives from the fact that whereas large populations evolve mostly deterministically and often become trapped on local fitness peaks, smaller populations can follow more stochastic evolutionary paths and thus locate higher fitness peaks. We also find that the target size of adaptation and the mutation rate interact with population size to influence the trade-off between rate of adaptation and final fitness. Our study suggests that the optimal population size for adaptation depends on the details of the environment and on the importance of either the ability to evolve rapidly or to reach high fitness levels.

Tài liệu tham khảo

Lenski RE, Rose MR, Simpson SC, Tadler SC: Long-Term Experimental Evolution In Escherichia-Coli. 1. Adaptation And Divergence During 2,000 Generations. American Naturalist. 1991, 138 (6): 1315-1341. 10.1086/285289. Elena SF, Lenski RE: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003, 4 (6): 457-469. 10.1038/nrg1088. Manrubia SC, Lazaro E: Viral evolution. Physics Of Life Reviews. 2006, 3 (2): 65-92. 10.1016/j.plrev.2005.11.002. Colegrave N, Collins S: Experimental evolution: experimental evolution and evolvability. Heredity. 2008, 100 (5): 464-470. 10.1038/sj.hdy.6801095. Baquero F, Blazquez J: Evolution of antibiotic resistance. Trends In Ecology and Evolution. 1997, 12 (12): 482-487. 10.1016/S0169-5347(97)01223-8. Levin B, Perrot V, Walker N: Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 2000, 154 (3): 985-97. Handel A, Regoes RR, Antia R: The role of compensatory mutations in the emergence of drug resistance. PLoS Comput Biol. 2006, 2 (10): e137-10.1371/journal.pcbi.0020137. Antia R, Regoes R, Koella J, Bergstrom C: The role of evolution in the emergence of infectious diseases. Nature. 2003, 426 (6967): 658-61. 10.1038/nature02104. Woolhouse MEJ, Haydon DT, Antia R: Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol Evol. 2005, 20 (5): 238-244. 10.1016/j.tree.2005.02.009. Gillespie JH: The role of population size in molecular evolution. Theor Popul Biol. 1999, 55 (2): 145-156. 10.1006/tpbi.1998.1391. Orr HA: The rate of adaptation in asexuals. Genetics. 2000, 155 (2): 961-968. Wilke CO: The speed of adaptation in large asexual populations. Genetics. 2004, 167 (4): 2045-2053. 10.1534/genetics.104.027136. de Visser JAGM, Rozen DE: Limits to adaptation in asexual populations. J Evol Biol. 2005, 18 (4): 779-788. 10.1111/j.1420-9101.2005.00879.x. Rozen DE, Habets MGJL, Handel A, de Visser JAGM: Heterogeneous adaptive trajectories of small populations on complex fitness landscapes. PLoS ONE. 2008, 3 (3): e1715-10.1371/journal.pone.0001715. Burch CL, Chao L: Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature. 2000, 406 (6796): 625-628. 10.1038/35020564. Perfeito L, Fernandes L, Mota C, Gordo I: Adaptive mutations in bacteria: high rate and small effects. Science. 2007, 317 (5839): 813-815. 10.1126/science.1142284. Wahl LM, Gerrish PJ: The probability that beneficial mutations are lost in populations with periodic bottlenecks. Evolution Int J Org Evolution. 2001, 55 (12): 2606-2610. Wahl LM, Gerrish PJ, Saika-Voivod I: Evaluating the impact of population bottlenecks in experimental evolution. Genetics. 2002, 162 (2): 961-971. Gillespie JH: Molecular Evolution Over The Mutational Landscape. Evolution. 1984, 38 (5): 1116-1129. 10.2307/2408444. Rozen DE, de Visser JAGM, Gerrish PJ: Fitness effects of fixed beneficial mutations in microbial populations. Curr Biol. 2002, 12 (12): 1040-1045. 10.1016/S0960-9822(02)00896-5. Orr HA: The distribution of fitness effects among beneficial mutations. Genetics. 2003, 163 (4): 1519-1526. Orr HA: The distribution of fitness effects among beneficial mutations in Fisher's geometric model of adaptation. J Theor Biol. 2006, 238 (2): 279-285. 10.1016/j.jtbi.2005.05.001. Kassen R, Bataillon T: Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nat Genet. 2006, 38 (4): 484-488. 10.1038/ng1751. Kauffman S, Levin S: Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol. 1987, 128: 11-45. 10.1016/S0022-5193(87)80029-2. Kauffman SA, Weinberger ED: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J Theor Biol. 1989, 141 (2): 211-245. 10.1016/S0022-5193(89)80019-0. Weinberger : Local properties of Kauffman's N-k model: A tunably rugged energy landscape. Phys Rev A. 1991, 44 (10): 6399-6413. 10.1103/PhysRevA.44.6399. Macken CA, Perelson AS: Protein evolution on rugged landscapes. Proc Natl Acad Sci USA. 1989, 86 (16): 6191-6195. 10.1073/pnas.86.16.6191. Ohta T: The meaning of near-neutrality at coding and non-coding regions. Gene. 1997, 205 (1-2): 261-267. 10.1016/S0378-1119(97)00396-X. Perelson AS, Macken CA: Protein evolution on partially correlated landscapes. Proc Natl Acad Sci USA. 1995, 92 (21): 9657-9661. 10.1073/pnas.92.21.9657. Welch JJ, Waxman D: The nk model and population genetics. J Theor Biol. 2005, 234 (3): 329-340. 10.1016/j.jtbi.2004.11.027. Orr HA: The population genetics of adaptation on correlated fitness landscapes: the block model. Evolution Int J Org Evolution. 2006, 60 (6): 1113-1124. Travisano M, Mongold JA, Bennett AF, Lenski RE: Experimental tests of the roles of adaptation, chance, and history in evolution. Science. 1995, 267 (5194): 87-90. 10.1126/science.7809610. Korona R, Nakatsu CH, Forney LJ, Lenski RE: Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc Natl Acad Sci USA. 1994, 91 (19): 9037-9041. 10.1073/pnas.91.19.9037. Jain K, Krug J: Deterministic and stochastic regimes of asexual evolution on rugged fitness landscapes. Genetics. 2007, 175 (3): 1275-1288. 10.1534/genetics.106.067165. Orr HA: The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005, 6 (2): 119-127. 10.1038/nrg1523. Gillespie J: Some properties of finite populations experiencing strong selection and weak mutation. American Naturalist. 1983, 121 (5): 691-708. 10.1086/284095. Whitlock MC, Phillips PC, Moore FBG, Tonsor SJ: Multiple Fitness Peaks And Epistasis. Annual Review Of Ecology And Systematics. 1995, 26: 601-629. 10.1146/annurev.es.26.110195.003125. Weinreich DM, Watson RA, Chao L: Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution Int J Org Evolution. 2005, 59 (6): 1165-1174. Martin G, Elena SF, Lenormand T: Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nat Genet. 2007, 39 (4): 555-560. 10.1038/ng1998. Arjan JA, Visser M, Zeyl CW, Gerrish PJ, Blanchard JL, Lenski RE: Diminishing returns from mutation supply rate in asexual populations. Science. 1999, 283 (5400): 404-406. 10.1126/science.283.5400.404. de Visser JAGM, Rozen DE: Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics. 2006, 172 (4): 2093-2100. 10.1534/genetics.105.052373. Gerrish PJ, Lenski RE: The fate of competing beneficial mutations in an asexual population. Genetica. 1998, 102-103 (1-6): 127-144. 10.1023/A:1017067816551. Park SC, Krug J: Clonal interference in large populations. Proc Natl Acad Sci USA. 2007, 104 (46): 18135-18140. 10.1073/pnas.0705778104. Weinreich DM, Delaney NF, Depristo MA, Hartl DL: Darwinian evolution can follow only very few mutational paths to fitter proteins. Science. 2006, 312 (5770): 111-114. 10.1126/science.1123539. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ: Empirical fitness landscapes reveal accessible evolutionary paths. Nature. 2007, 445 (7126): 383-386. 10.1038/nature05451. DePristo MA, Hartl DL, Weinreich DM: Mutational reversions during adaptive protein evolution. Mol Biol Evol. 2007, 24 (8): 1608-1610. 10.1093/molbev/msm118. Froissart R, Wilke CO, Montville R, Remold SK, Chao L, Turner PE: Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics. 2004, 168: 9-19. 10.1534/genetics.104.030205. Bergstrom CT, McElhany P, Real LA: Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proc Natl Acad Sci USA. 1999, 96 (9): 5095-5100. 10.1073/pnas.96.9.5095. Heffernan JM, Wahl LM: The effects of genetic drift in experimental evolution. Theor Popul Biol. 2002, 62 (4): 349-356. 10.1016/S0040-5809(02)00002-3. Otto SP, Lenormand T: Resolving the paradox of sex and recombination. Nat Rev Genet. 2002, 3 (4): 252-261. 10.1038/nrg761. Kim Y, Orr HA: Adaptation in sexuals vs. asexuals: clonal interference and the Fisher-Muller model. Genetics. 2005, 171 (3): 1377-1386. 10.1534/genetics.105.045252. de Visser JAGM, Elena SF: The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet. 2007, 8 (2): 139-149. 10.1038/nrg1985. Cooper TF: Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 2007, 5 (9): e225-10.1371/journal.pbio.0050225. de Visser JAGM, Park SC, Krug J: Exploring the effect of sex on empirical fitness landscapes. Am Nat. 2009, 174 (Suppl 1): S15-S30. 10.1086/599081. Bollback JP, Huelsenbeck JP: Clonal interference is alleviated by high mutation rates in large populations. Mol Biol Evol. 2007, 24 (6): 1397-1406. 10.1093/molbev/msm056. Desai MM, Fisher DS, Murray AW: The speed of evolution and maintenance of variation in asexual populations. Curr Biol. 2007, 17 (5): 385-394. 10.1016/j.cub.2007.01.072. Fogle CA, Nagle JL, Desai MM: Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics. 2008, 180 (4): 2163-2173. 10.1534/genetics.108.090019. Cowperthwaite MC, Bull JJ, Meyers LA: From bad to good: fitness reversals and the ascent of deleterious mutations. PLoS Comput Biol. 2006, 2 (10): e141-10.1371/journal.pcbi.0020141. Serra MC, Haccou P: Dynamics of escape mutants. Theor Popul Biol. 2007, 72: 167-178. 10.1016/j.tpb.2007.01.005. Iwasa Y, Michor F, Nowak M: Stochastic tunnels in evolutionary dynamics. Genetics. 2004, 166 (3): 1571-9. 10.1534/genetics.166.3.1571. Weinreich DM, Chao L: Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution Int J Org Evolution. 2005, 59 (6): 1175-1182. Weissman DB, Desai MM, Fisher DS, Feldman MW: The rate at which asexual populations cross fitness valleys. Theor Popul Biol. 2009, 75 (4): 286-300. 10.1016/j.tpb.2009.02.006. Campos PRA, Wahl LM: The effects of population bottlenecks on clonal interference, and the adaptation effective population size. Evolution. 2009, 63 (4): 950-958. 10.1111/j.1558-5646.2008.00595.x. Handel A, Bennett MR: Surviving the bottleneck: transmission mutants and the evolution of microbial populations. Genetics. 2008, 180 (4): 2193-2200. 10.1534/genetics.108.093013.