Tác động của việc sử dụng metformin lên kết quả của bệnh nhân đa xơ cứng tái phát - thuyên giảm nhận interferon beta 1a: một thử nghiệm ngẫu nhiên có kiểm soát giai đoạn II mở

Mohamed Y. Abdelgaied1,2,3, Mohamed Hamed Rashad4, Hend M. El-Tayebi2, Mohamed H. Solayman1,5
1Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo (GUC), Cairo, Egypt
2Clinical Pharmacology and Pharmacogenomics Research Group, Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
3Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
4Neurology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
5Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt

Tóm tắt

Bệnh đa xơ cứng (MS) là một rối loạn thoái hóa thần kinh mãn tính do thiếu myelin. Mức độ chất trung gian viêm pro-inflammatory và một số tham số stress oxy hóa cao có thể thúc đẩy quá trình mất myelin. Chúng tôi nhằm mục đích nghiên cứu hiệu quả và độ an toàn của metformin như một liệu pháp bổ trợ cho interferon beta 1a (IFNβ-1a) ở bệnh nhân đa xơ cứng tái phát - thuyên giảm (RRMS). Tám mươi bệnh nhân RRMS được chia đều thành 2 nhóm: Nhóm can thiệp nhận IFNβ-1a cộng với 2 g metformin mỗi ngày một lần và nhóm đối chứng chỉ nhận IFNβ-1a. Interleukin 17 (IL17), interleukin 22 (IL22), malondialdehyde (MDA), tổn thương T2 trong chụp cộng hưởng từ (MRI) và thang trạng thái khuyết tật mở rộng (EDSS) được đánh giá tại thời điểm bắt đầu và sau 6 tháng. Tại thời điểm bắt đầu, không có sự khác biệt có ý nghĩa thống kê giữa hai nhóm (p > 0,05). Sau 6 tháng, sự thay đổi trong trung vị (khoảng tứ phân) của các kết quả cho cả nhóm can thiệp và nhóm đối chứng là; IL17 (−1,39 (4,19) so với −0,93 (5,48), p = 0,48), IL22 (−0,14 (0,48) so với −0,09 (0,6), p = 0,53), và EDSS (0 so với 0, p = 1), tương ứng. Sự thay đổi trung bình (độ lệch chuẩn) trong MDA cho nhóm can thiệp và nhóm đối chứng lần lượt là − 0,93 (2,2) so với −0,5 (2,53), p = 0,038. Đối với kết quả MRI, 21 bệnh nhân có thể đứng yên và thuyên giảm và 1 bệnh nhân có diễn biến tiến triển trong nhóm can thiệp so với 12 bệnh nhân có thể đứng yên và thuyên giảm và 4 bệnh nhân có tiến triển trong nhóm đối chứng, p = 0,14. Việc thêm metformin vào IFNβ-1a cho thấy một hiệu ứng tiềm năng trên một chỉ số stress oxy hóa (MDA). Tuy nhiên, không có hiệu ứng có ý nghĩa thống kê lên các kết quả miễn dịch học, MRI và lâm sàng. Chúng tôi khuyến nghị các nghiên cứu quy mô lớn hơn để xác nhận hoặc bác bỏ những phát hiện này. Số đăng ký ClinicalTrials.gov: NCT05298670, 28/3/2022.

Từ khóa

#đa xơ cứng #metformin #interferon beta 1a #liệu pháp bổ trợ #thử nghiệm lâm sàng

Tài liệu tham khảo

Chaudhuri A (2013) Multiple sclerosis is primarily a neurodegenerative disease. J Neural Transm (Vienna) 120:1463–1466. https://doi.org/10.1007/s00702-013-1080-3 Tillery EE, Clements JN, Howard Z (2017) What’s new in multiple sclerosis? Ment Health Clin 7(5):213–220 Adamczyk B, Adamczyk-Sowa M (2016) New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. https://doi.org/10.1155/2016/1973834 Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. https://doi.org/10.1155/2013/708659 Sallusto F (2016) Heterogeneity of human CD4+ T cells against microbes. Annu Rev Immunol 34:317–334. https://doi.org/10.1146/annurev-immunol-032414-112056 Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F (2014) T helper cells plasticity in inflammation. Cytometry A 85(1):36–42. https://doi.org/10.1002/cyto.a.22348 Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21(4):467–476. https://doi.org/10.1016/j.immuni.2004.08.018 Wing AC, Hygino J, Ferreira TB, Kasahara TM, Barros PO, Sacramento PM, Andrade RM, CamargoS RF, Alves-Leon SV, Vasconcelos CC, Alvarenga R, Bento CA (2016) Interleukin-17-and interleukin-22-secreting myelin-specific CD 4+ T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients. Immunology 147(2):212–220. https://doi.org/10.1111/imm.12552 Kuntzel T, Bagnard D (2022) Manipulating Macrophage/Microglia Polarization to Treat Glioblastoma or Multiple Sclerosis. Pharmaceutics 14(2):344. https://doi.org/10.3390/pharmaceutics14020344 Mao P, Reddy PH (2010) Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta Mol Basis Dis 1802(1):66–79 Largani SHH, Borhani-Haghighi M, Pasbakhsh P, Mahabadi VP, Nekoonam S, Shiri E, Kashani IR, Zendehdel A (2019) Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J Mol Histol 50:263–271. https://doi.org/10.1007/s10735-019-09824-0 Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53(6):885–892 Pardo G, Jones DE (2017) The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations. J Neurol 264(12):2351–2374. https://doi.org/10.1007/s00415-017-8594-9 Filipi M, Jack S (2020) Interferons in the treatment of multiple Sclerosis: A clinical efficacy, safety, and tolerability update. Int J MS Care 22(4):165–172. https://doi.org/10.7224/1537-2073.2018-063 Li H, Hu F, Zhang Y, Li K (2020) Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing–remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol 267(12):3489–3498. https://doi.org/10.1007/s00415-019-09395-w Sattarnezhad N, Healy BC, Baharnoori M, Diaz-Cruz C, Stankiewicz J, Weiner HL, Chitnis T (2022) Comparison of dimethyl fumarate and interferon outcomes in an MS cohort. BMC Neurol 22(1):252. https://doi.org/10.1186/s12883-022-02761-8 Vermersch P, Scaramozza M, Levin S, Alroughani R, Deiva K, Pozzilli C, Lyons J, Mokliatchouk O, Pultz J, N’Dure F, Liu S, Badwan R, Branco F, Hood-Humphrey V, Franchimont N, Hanna J, Maghzi AH (2022) Effect of dimethyl fumarate vs interferon β-1a in patients with pediatric-onset multiple sclerosis: the CONNECT randomized clinical trial. JAMA Netw Open 5(9):e2230439. https://doi.org/10.1001/jamanetworkopen.2022.30439 Ning P, Luo A, Mu X, Xu Y, Li T (2022) Exploring the dual character of metformin in Alzheimer’s disease. Neuropharmacology 207:108966. https://doi.org/10.1016/j.neuropharm.2022.108966 Feng YY, Wang Z, Pang H (2023) Role of metformin in inflammation. Mol Biol Rep 50(1):789–798. https://doi.org/10.1007/s11033-022-07954-5 Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A (2022) Metformin intervention—a panacea for cancer treatment? Cancers 14(5):1336 Khezri MR, Yousefi K, Mahboubi N, Hodaei D, Ghasemnejad-Berenji M (2022) Metformin in Alzheimer’s disease: An overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 197:114945. https://doi.org/10.1016/j.bcp.2022.114945 Tawfik TZ, Gad AH, Mehaney DA, El Nahrery EE, Shehata HS, Hashem H, Abdel Ghaffar NF, Shalaby N (2016) Interleukins 17 and 10 in a sample of Egyptian relapsing remitting multiple sclerosis patients. J Neurol Sci 369:36–38. https://doi.org/10.1016/j.jns.2016.07.034 van der Vuurst de Vries RM, Mescheriakova JY, Wong YYM, Runia TF, Jafari N, Samijn JP, de Beukelaar JWK, Wokke BHA, Siepman TAM, Hintzen RQ (2018) Application of the 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome. JAMA Neurol 75(11): 1392-1398. 1001/jamaneurol.2018.2160 Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452. https://doi.org/10.1212/wnl.33.11.1444 Cunniffe N (2021) Promoting and measuring remyelination and neuroprotection in clinical trials of people with multiple sclerosis. Dissertation, University of Cambridge. https://doi.org/10.17863/CAM.77136 Ovcharova E, Danovska M, Marinova D, Pendicheva-Duhlenska D, Tonchev P, Atanasova M, Ruseva A, Shepherd N, Tzveova R (2022) Adapted Mediterranean Diet Impact on the Symptoms of Chronic Fatigue, Serum Levels of Omega-3 Polyunsaturated Fatty Acids (PUFAs) and Interleukin 17 (IL-17) in Patients with Relapsing-Remitting Multiple Sclerosis undergoing Disease-Modifying Therapy: A Pilot Study. J IMAB 28(1):4297–4304. https://doi.org/10.5272/jimab.2022281.4297 Noroozi S, Arababadi MK, Meimand HAE, Asadikaram G (2017) The effect of IFN-β 1a on biochemical factors in multiple sclerosis patients. Iran Red Crescent Med J 19(8):e41032 Green AE (2013) AMP-activated protein kinase (AMPK) activation for the treatment of mitochondrial disease. Dissertation, York University. Hagen J, Zimmerman R, Goetz C, Bonnevier J, Houchins JP, Reagan K, Kalyuzhny AE (2015) Comparative multi-donor study of IFNγ secretion and expression by human PBMCs using ELISPOT side-by-side with ELISA and flow cytometry assays. Cells 4(1):84–95 Ji N, Forsthuber TG (2016) ELISPOT techniques. Methods Mol Biol 1304:63–71. https://doi.org/10.1007/7651_2014_111 Abdel-Dayem MA, Shaker ME, Gameil NM (2019) Impact of interferon β-1b, interferon β-1a and fingolimod therapies on serum interleukins-22, 32α and 34 concentrations in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 337:577062. https://doi.org/10.1016/j.jneuroim.2019.577062 Balasa R, Maier S, Voidazan S, Hutanu A, Bajko Z, Motataianu A, Tilea B, Tiu C (2017) Assessment of Interleukin-17A, Interleukin-10 and Transforming Growth Factor-Beta1 Serum Titers in Relapsing Remitting Multiple Sclerosis Patients Treated with Avonex, Possible Biomarkers for Treatment Response. CNS Neurol Disord Drug Targets 16(1):93–101. https://doi.org/10.2174/1871527315666160615110739 Toghianifar N, Ashtari F, Zarkesh-Esfahani SH, Mansourian M (2015) Effect of high dose vitamin D intake on interleukin-17 levels in multiple sclerosis: a randomized, double-blind, placebo-controlled clinical trial. J Neuroimmunol 285:125–128. https://doi.org/10.1016/j.jneuroim.2015.05.022 Bălaşa R, Bajko Z, Huţanu A (2013) Serum levels of IL-17A in patients with relapsing–remitting multiple sclerosis treated with interferon-β. Mult Scler 19(7):885–890. https://doi.org/10.1177/1352458512468497 Kim C, Golden SH, Mather KJ, Laughlin GA, Kong S, Nan B, Barrett-Connor E, Randolph JF (2012) Racial/ethnic differences in sex hormone levels among postmenopausal women in the diabetes prevention program. J Clin Endocrinol Metab 97(11):4051–4060 Bonnet F, Scheen A (2017) Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab 19(4):473–481. https://doi.org/10.1111/dom.12854 Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I (2013) AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 183(2):526–541. https://doi.org/10.1016/j.ajpath.2013.04.030 Paintlia AS, Mohan S, Singh I (2013) Combinatorial effect of metformin and lovastatin impedes T-cell autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis. J Clin Cell Immunol. https://doi.org/10.4172/2155-9899.1000149 Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67. https://doi.org/10.1016/j.jneuroim.2016.01.014 Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182(12):8005–8014 Houshmand F, Barati M, Golab F, Ramezani-Sefidar S, Tanbakooie S, Tabatabaei M, Amiri M, Sanadgol N (2019) Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. Daru 27(2):583–592. https://doi.org/10.1007/s40199-019-00286-z Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F (2020) Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 72(3):641–658. https://doi.org/10.1007/s43440-019-00019-8 Abdi M, Pasbakhsh P, Shabani M, Nekoonam S, Sadeghi A, Fathi F, Abouzaripour M, Mohamed W, Zibara K, Kashani IR, Zendedel A (2021) Metformin therapy attenuates pro-inflammatory microglia by inhibiting NF-κB in cuprizone demyelinating mouse model of multiple sclerosis. Neurotox Res 39(6):1732–1746. https://doi.org/10.1007/s12640-021-00417-y Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR, Chalut K, van Wijngaarden P, Franklin RJM (2019) Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25(4):473-485e8. https://doi.org/10.1016/j.stem.2019.08.015 Negrotto L, Farez MF, Correale J (2016) Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol 73(5):520–528. https://doi.org/10.1001/jamaneurol.2015.4807