TheREE-and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts

Mineralogical Magazine - Tập 81 Số 2 - Trang 217-250 - 2017
Leone Melluso1, Vincenza Guarino1, Michele Lustrino2,3, Vincenzo Morra1, Roberto dè Gennaro1
1Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
2CNR-IGAG c/o Dipartimento di Scienze della Terra, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy
3Dipartimento di Scienze della Terra, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy

Tóm tắt

AbstractThe Late Cretaceous Itatiaia complex is made up of nepheline syenite grading to peralkaline varieties, quartz syenite and granite, emplaced in the metamorphic rocks of the Serra do Mar, SE Brazil. The nepheline syenites are characterized by assemblages with alkali feldspar, nepheline, Fe-Ti oxides, clinopyroxene, amphibole, apatite and titanite, while the peralkaline nepheline syenites have F-disilicates (rinkite, wöhlerite, hiortdahlite, låvenite), britholite and pyrophanite as the accessory phases. The silica-oversaturated rocks have alkali feldspar, plagioclase, quartz, amphibole, clinopyroxene and Fe-Ti oxides; the chevkinite-group minerals are the featured accessory phases and are found with allanite, fluorapatite, fluorite, zircon, thorite, yttrialite, zirconolite, pyrochlore and yttrocolumbite. The major- and trace-element composition of the Itatiaia rocks have variations linked to the amount of accessory phases, have smooth, enriched chondritenormalized rare-earth element (REE) distribution patterns in the least-evolved nepheline syenites and convex patterns in the most-evolved nepheline syenites. TheREEdistribution patterns of the quartz syenites and granites show a typical pattern caused by fractional crystallization of feldspar and amphibole, in an environment characterized by relatively high oxygen fugacity (>NiNiO buffer) and high concentrations of H2O and F, supporting the crystallization of hydrous phases, fluorite and F-disilicates. The removal of small amounts of titanite in the transition from the least-evolved to the most-evolved nepheline syenites stems from petrogenetic models involvingREE, and is shown to be a common feature of the magmatic evolution of many other syenitic/ trachytic/ phonolitic complexes of the Serra do Mar and elsewhere.

Từ khóa


Tài liệu tham khảo

10.1016/j.lithos.2014.10.002

10.2478/mipo-2013-0006

Carbonin, 2005, Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, 149

Spinelli, 2008, A occorrencia alcalina de Cananeia, litoral sul do estado de Sao Paulo: petrologia e geoquimica, Revista Brasileira de Geociencias, 39, 304, 10.25249/0375-7536.2009392304323

Czamanske, 1988, Alkali amphibole, tetrasilicic mica and sodic pyroxene in peralkaline siliceous rocks, Questa caldera, New Mexico, American Journal of Science, 288-A, 358

10.2138/am-1998-7-804

10.1016/j.jsames.2007.02.006

Moreau, 1996, The Los Archipelago nepheline syenite ring structure: a magmatic marker of the evolution of the central and equatorial Atlantic, The Canadian Mineralogist, 34, 281

10.1007/s00710-011-0168-4

Rønsbo, 2014, Rinkite-nacareniobsite-(Ce) solid solution series and hainite from the Ilímaussaq alkaline complex: occurrence and compositional variation, Bulletin of the Geological Society of Denmark, 62, 1, 10.37570/bgsd-2014-62-01

10.1180/minmag.1986.050.358.05

10.1016/j.lithos.2006.12.003

10.3749/canmin.51.2.313

Valença J.G. (1980) Geology, petrography and petrogenesis of some alkaline igneous complexes of Rio de Janeiro State, Brazil. PhD Thesis, University of Western Ontario, Canada, 248 pp.

Comin-Chiaramonti P. and Gomes C.B. (2005) Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform. FAPESP, São Paulo, Brazil, 751 pp.

10.11606/issn.2316-8986.v19i0p63-85

10.1016/j.lithos.2006.03.070

Brotzu, 1989, Petrological and geochemical studies of alkaline rocks from continental Brazil. 8. The syenitic intrusion of Morro Redondo R.J., Geochimica Brasiliensis, 3, 63

10.1016/j.jsames.2011.05.003

10.1127/0935-1221/2013/0025-2291

Brotzu, 2005, Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, 443

10.1016/j.lithos.2011.10.007

10.1007/s00410-012-0809-6

10.1017/CBO9780511535581

10.3749/canmin.48.1.205

10.2138/am-2015-4995

Gomes, 1987, Petrological and geo-chemical studies of alkaline rocks from continental Brazil. 2. The Tunas massif, state of Paraná, Geochimica Brasiliensis, 1, 201

Enrich G.E.R. , Azzone R.G. , Ruberti E. , Gomes C.B. and Comin-Chiaramonti P. (2005) Itatiaia, Passa Quatro and São Sebastião Island, the major alkaline syenitic complexes from the Serra do Mar Region. Pp. 419–441 in: Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform ( Comin-Chiaramonti P. and Gomes C.B. , editors). FAPESP, São Paulo, Brazil.

10.1016/j.lithos.2007.11.008

10.1007/s00710-015-0387-1

10.1180/minmag.2016.080.046

Clark J.R. and Williams-Jones A.E. (2004) Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-project SC2, Montréal, Canada, 17 pp.

Bellieni, 1990, Early and Late Cretaceous magmatism from São Sebastião Island (SE Brazil): geochemistry and petrology, Geochimica Brasiliensis, 4, 59

10.1016/j.gr.2011.05.012

10.1016/j.lithos.2013.10.032

10.1016/0895-9811(92)90044-Y

10.1093/petroj/40.9.1377

10.1093/petroj/39.8.1493

Barbieri, 1987, Petrological and geochemical studies of alkaline rocks from continental Brazil. 1. The phonolite suite from Piratini R.S., Geochimica Brasiliensis, 1, 109

10.1016/0009-2541(80)90020-0

10.1126/science.258.5084.975

Gupta, 2015, Origin of Potassium-Rich Silica-Deficient Igneous Rocks., 536, 10.1007/978-81-322-2083-1

10.3749/canmin.47.5.1087

Guarino, 2011, Mineral compositions and magmatic evolution of the calcalkaline rocks of northwestern Sardinia, Italy, Periodico di Mineralogia, 80, 517

10.1016/0098-3004(93)90033-2

10.1016/j.lithos.2006.03.007

Bennio, 2002, Petrological, geochemical and Sr-Nd isotopic features of alkaline rocks from the Arraial do Cabo Frio peninsula (southeastern Brazil), Periodico di Mineralogia, 71, 137

10.1180/0026461026660078

Motoki, 2010, Geochemical evolution of the felsic alkaline rocks of Tanguá and Rio Bonito intrusive bodies, State of Rio de Janeiro, Brazil, São Paulo UNESP, Geociências, 29, 291

10.1180/minmag.1965.034.268.17

10.1180/minmag.2012.076.5.03

10.1180/minmag.1986.050.355.12

10.1016/B978-0-444-42148-7.50008-3

Atencio, 1999, Hainite from Pocos de Caldas, Minas Gerais, Brazil, The Canadian Mineralogist, 37, 91

10.3749/canmin.46.4.1023

10.1093/petrology/egn021

10.1016/0012-821X(94)90076-0

10.1093/petrology/egq058

10.1016/j.lithos.2004.07.004

10.1016/S0024-4937(97)00007-8

10.1007/s00410-003-0475-9

10.1016/j.epsl.2010.12.005

10.1017/S0016756811000902

10.1016/j.lithos.2012.09.003

Bowles, 1988, Definition and range of composition of naturally occurring minerals with the pseudo-brookite structure, American Mineralogist, 73, 1377

Lyubetskaya, 2007, Chemical composition of Earth's primitive mantle and its variance: 1, methods and results. Journal of Geophysical Research, 112

10.3749/canmin.51.2.333

Leake, 1997, Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and minerals names, The Canadian Mineralogist, 35, 219

10.1016/j.chemgeo.2008.09.002

Cellai, 1993, Perrierite-chevkinite in igneous ultrapotassic rocks from Central Italy: chemical data and their petrological significance, Periodico di Mineralogia, 62, 57

10.1093/petrology/egq086

10.3749/canmin.46.1.19

Mitchell, 2004, Ecandrewsite-zincian pyrophanite from lujavrite, Pilanesberg alkaline complex, South Africa, Mineralogical Magazine, 42, 1169

10.2478/mipo-2013-0007

10.1016/0012-8252(95)00031-3

10.1590/0001-3765201520130385

10.1016/j.chemgeo.2012.06.016

Pires, 2014, Caracterizaçao petrografica e mineralogica de brechas magmatico-hidrotermais no complexo alcalino de Itatiaia, estado do Rio de Janeiro: ocorrencias de fluorita e minerais de ETR, Anuario do Instituto de Geociencias, UFRJ, 37, 4

10.1180/minmag.1997.061.407.02

10.1180/minmag.1987.051.360.07

10.1016/j.oregeorev.2014.05.003

Enrich, 2009, Geology and geochronology of Monte de Trigo island alkaline suite, southeastern Brazil, Revista Brasileira de Geociencias, 39, 67, 10.25249/0375-7536.20093916780

Riccomini, 2005, Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, 31

10.1016/j.lithos.2006.03.026

Penalva, 1967, Geologia e tectonica da região do Itatiaia, Boletim Facultade Filosofia Ciências e Letras, Università de São Paulo, 302, 95

10.1016/0012-8252(81)90009-X

Sichel, 2012, Cristalização fracionada e assimilação da crosta continental pelos magmas de rochas alcalinas félsicas do estado do Rio de Janeiro, Brazil, Anuário do Instituto de Geociências, 35, 84

10.2113/gscanmin.41.5.1203

10.1016/j.lithos.2008.06.006

10.1127/0935-1221/2003/0015-0551

10.1016/0016-7037(93)90380-F

10.1016/S0895-9811(03)00030-0

Cerny, 2007, Subsolidus behavior of niobian rutile from the Pisek region, Czech Republic: a model for exsolution in W-and Fe2+»Fe3+-rich phases, Journal of Geosciences, 52, 143

10.1007/978-1-4899-2617-3_4

10.1016/j.jafrearsci.2015.09.015

10.1007/s00710-009-0064-3

Lustrino, 2003, IV South American Symposium on Isotope Geology., 593

Lanyon, 1995, Petrology of the alkaline and ultramafic lamprophyres associated with the Okenyenya igneous complex, northwestern Namibia, South African Journal of Geology, 98, 140

Geraldes, 2013, Conjugate Divergent Margins, 41

10.1590/23174889201500010006

Giret, 1980, Amphibole compositional trends in oversaturated and undersatur-ated alkaline plutonic ring-complexes, The Canadian Mineralogist, 18, 481

10.1093/petrology/41.8.1207

10.1016/j.earscirev.2010.06.001

10.1180/minmag.1988.052.367.01