The hypoxia signaling pathway and hypoxic adaptation in fishes

Wuhan Xiao1
1Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148: 399–408

Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Ann Rev Pathol, 2014, 9: 47–71

Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell, 2010, 40: 294–309

Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. Dev Cell, 2009, 17: 755–773

Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 2004, 5: 343–354

Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Ann Rev Pathol, 2007, 69: 145–170

Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J, 2012, 31: 2448–2460

Aragones J, Fraisl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab, 2009, 9: 11–22

Kaelin WG. Von Hippel-Lindau disease. Ann Rev Pathol, 2007, 2: 145–173

Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008, 453: 807–811

Flugel D, Gorlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol, 2007, 27: 3253–3265

Ryu JH, Li SH, Park HS, Park JW, Lee B, Chun YS. Hypoxia-inducible factor alpha subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem, 2011, 286: 6963–6970

Sang N, Fang J, Srinivas V, Leshchinsky I, Caro J. Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol Cell Biol, 2002, 22: 2984–2992

Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, Davis C, Chandler-Brown D, Kaeberlein M. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science. 2009, 324: 1196–1198

Chen D, Thomas EL, Kapahi P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet, 2009, 5: e1000486

Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell, 2010, 140: 280–293

Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell, 2010, 38: 864–878

Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science, 2009, 324: 1289–1293

Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 2013, 155: 1624–1638

Hubbi ME, Hu H, Kshitiz Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem, 2013, 288: 20768–20775

Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP, Haigis MC. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell, 2011, 19: 416–428

Shao R, Zhang FP, Tian F, Anders Friberg P, Wang X, Sjoland H, Billig H. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett, 2004, 569: 293–300

Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell, 2007, 131: 309–323

Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 2007, 131: 584–595

Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 2011, 145: 732–744

Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S, Cordenonsi M, Piccolo S. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature, 2012, 487: 380–384

Chen Z, Liu X, Mei Z, Wang Z, Xiao W. EAF2 suppresses hypoxiainduced factor 1alpha transcriptional activity by disrupting its interaction with coactivator CBP/p300. Mol Cell Biol, 2014, 34: 1085–1099

Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, Ronai Z. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell, 2004, 117: 941–952

Jung CR, Hwang KS, Yoo J, Cho WK, Kim JM, Kim WH, Im DS. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nat Med, 2006, 12: 809–816

Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature, 2006, 442: 779–785

Huang C, Han Y, Wang Y, Sun X, Yan S, Yeh ET, Chen Y, Cang H, Li H, Shi G, Cheng J, Tang X, Yi J. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J, 2009, 28: 2748–2762

Foxler DE, Bridge KS, James V, Webb TM, Mee M, Wong SC, Feng Y, Constantin-Teodosiu D, Petursdottir TE, Bjornsson J, Ingvarsson S, Ratcliffe PJ, Longmore GD, Sharp TV. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat Cell Biol, 2012, 14: 201–208

Nilsson GE, Renshaw GM. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol, 2004, 207: 3131–3139

Nilsson GE. Surviving anoxia with the brain turned on. News Physiol Sci, 2001, 16: 217–221

Lutz PL, Nilsson GE. Vertebrate brains at the pilot light. Resp Physiol Neurobiol, 2004, 141: 285–296

Stecyk JA, Stenslokken KO, Farrell AP, Nilsson GE. Maintained cardiac pumping in anoxic crucian carp. Science, 2004, 306: 77

Shoubridge EA, Hochachka PW. Ethanol: novel end product of vertebrate anaerobic metabolism. Science, 1980, 209: 308–309

Roesner A, Mitz SA, Hankeln T, Burmester T. Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J, 2008, 275: 3633–3643

Rytkonen KT, Akbarzadeh A, Miandare HK, Kamei H, Duan C, Leder EH, Williams TA, Nikinmaa M. Subfunctionalization of cyprinid hypoxia-inducible factors for roles in development and oxygen sensing. Evolution, 2013, 67: 873–882

Chi W, Gan X, Xiao W, Wang W, He S. Different evolutionary patterns of hypoxia-inducible factor alpha (HIF-alpha) isoforms in the basal branches of Actinopterygii and Sarcopterygii. FEBS Open Bio, 2013, 3: 479–483

Nilsson GE, Dymowska A, Stecyk JA. New insights into the plasticity of gill structure. Resp Physiol Neurobiol, 2012, 184: 214–222

Turko AJ, Cooper CA, Wright PA. Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus. J Exp Biol, 2012, 215: 3973–3980

Dhillon RS, Yao L, Matey V, Chen BJ, Zhang AJ, Cao ZD, Fu SJ, Brauner CJ, Wang YS, Richards JG. Interspecific differences in hypoxiainduced gill remodeling in carp. Physiol Biochem Zool, 2013, 86: 727–739

Tzaneva V, Vadeboncoeur C, Ting J, Perry SF. Effects of hypoxiainduced gill remodelling on the innervation and distribution of ionocytes in the gill of goldfish, Carassius auratus. J Comp Neurol, 2014, 522: 118–130

Mitrovic D, Dymowska A, Nilsson GE, Perry SF. Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia. Am J Physiol Regul Integr Comp Physiol, 2009, 297: R224–234

Zachar PC, Jonz MG. Oxygen sensitivity of gill neuroepithelial cells in the anoxia-tolerant goldfish. Adv Exp Med Biol, 2012, 758: 167–172

Cameron JS, DeWitt JP, Ngo TT, Yajnik T, Chan S, Chung E, Kang E. Cardiac K(ATP) channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.). Comp Biochem Physiol A Mol Integr Physiol, 2013, 164: 554–564

Capossela KM, Brill RW, Fabrizio MC, Bushnell PG. Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures. J Fish Biol, 2012, 81: 1043–1058

Feng X, Liu X, Zhang W, Xiao W. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J, 2011, 30: 3397–3415

Soitamo AJ, Rabergh CM, Gassmann M, Sistonen L, Nikinmaa M. Characterization of a hypoxia-inducible factor (HIF-1alpha) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem, 2001, 276: 19699–19705

Rahman MS, Thomas P. Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1alpha and HIF-2alpha, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene, 2007, 396: 273–282

Rojas DA, Perez-Munizaga DA, Centanin L, Antonelli M, Wappner P, Allende ML, Reyes AE. Cloning of HIF-1alpha and HIF-2alpha and mRNA expression pattern during development in zebrafish. Gene Exp Patterns, 2007, 7: 339–345

Shen RJ, Jiang XY, Pu JW, Zou SM. HIF-1alpha and -2alpha genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol B Biochem Mol Biol, 2010, 157: 273–280

Cao YB, Chen XQ, Wang S, Wang YX, Du JZ. Evolution and regulation of the downstream gene of hypoxia-inducible factor-1alpha in naked carp (Gymnocypris przewalskii) from Lake Qinghai, China. J Mol Evol, 2008, 67: 570–580

Rytkonen KT, Vuori KA, Primmer CR, Nikinmaa M. Comparison of hypoxia-inducible factor-1 alpha in hypoxia-sensitive and hypoxiatolerant fish species. Comp Biochem Physiol Part D Genomics Proteomics, 2007, 2: 177–186

Terova G, Rimoldi S, Cora S, Bernardini G, Gornati R, Saroglia M. Acute and chronic hypoxia affects HIF-1 alpha mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture, 2008, 279: 150–159

Mohindra V, Tripathi RK, Singh RK, Lal KK. Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1alpha, -2alpha and -3alpha in hypoxia-tolerant Indian catfish, Clarias batrachus [Linnaeus, 1758]. Mol Biol Rep, 2013, 40: 5805–5815

Geng X, Feng J, Liu S, Wang Y, Arias C, Liu Z. Transcriptional regulation of hypoxia inducible factors alpha (HIF-alpha) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol, 2014, 169: 38–50

Law SH, Wu RS, Ng PK, Yu RM, Kong RY. Cloning and expression analysis of two distinct HIF-alpha isoforms—gcHIF-1alpha and gcHIF-4alpha—from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol, 2006, 7: 15

Rimoldi S, Terova G, Ceccuzzi P, Marelli S, Antonini M, Saroglia M. HIF-1alpha mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Mol Biol Rep, 2012, 39: 4009–4015

Kaelin WG Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell, 2008, 30: 393–402

Kaelin WG, Sawyers CL, Mihich E. Nineteenth Annual Pezcoller Symposium: hypothesis-driven clinical investigation in cancer. Cancer Res, 2007, 67: 11102–11105

Nikinmaa M, Rees BB. Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol, 2005, 288: R1079–1090

van Rooijen E, Voest EE, Logister I, Korving J, Schwerte T, Schulte-Merker S, Giles RH, van Eeden FJ. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood, 2009, 113: 6449–6460

Lindsley JE, Rutter J. Nutrient sensing and metabolic decisions. Comp Biochem Physiol B Biochem Mol Biol, 2004, 139: 543–559

Krumschnabel G, Biasi C, Wieser W. Action of adenosine on energetics, protein synthesis and K(+) homeostasis in teleost hepatocytes. J Exp Biol, 2000, 203: 2657–2665

Nilsson GE. The adenosine receptor blocker aminophylline increases anoxic ethanol excretion in crucian carp. Am J Physiol, 1991, 261: R1057–1060

Nilsson GE, Hylland P, Lofman CO. Anoxia and adenosine induce increased cerebral blood flow rate in crucian carp. Am J Physiol, 1994, 267: R590–595

Krumschnabel G, Schwarzbaum PJ, Lisch J, Biasi C, Wieser W. Oxygendependent energetics of anoxia-tolerant and anoxia-intolerant hepatocytes. J Exp Biol, 2000, 203: 951–959

Hermes-Lima M, Zenteno-Savin T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol Toxicol Pharmacol, 2002, 133: 537–556

Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol, 2001, 280: R100–107

Vig E, Gabrielak T, Leyko W, Nemcsok J, Matkovics B. Purification and characterization of Cu,Zn-superoxide dismutase from common carp liver. Comp Biochem Physiol B Biochem Mol Biol, 1989, 94: 395–397

Zhong XP, Wang D, Zhang YB, Gui JF. Identification and characterization of hypoxia-induced genes in Carassius auratus blastulae embryonic cells using suppression subtractive hybridization. Comp Biochem Physiol B Biochem Mol Biol, 2009, 152: 161–170

Liao X, Cheng L, Xu P, Lu G, Wachholtz M, Sun X, Chen S. Transcriptome analysis of crucian carp (Carassius auratus), an important aquaculture and hypoxia-tolerant species. PLoS One, 2013, 8: e62308

Everett MV, Antal CE, Crawford DL. The effect of short-term hypoxic exposure on metabolic gene expression. J Exp Zool A Ecol Genet Physiol, 2012, 317: 9–23

Chen K, Cole RB, Rees BB. Hypoxia-induced changes in the zebrafish (Danio rerio) skeletal muscle proteome. J Proteomics, 2013, 78: 477–485

Zhang Z, Wu RS, Mok HO, Wang Y, Poon WW, Cheng SH, Kong RY. Isolation, characterization and expression analysis of a hypoxiaresponsive glucose transporter gene from the grass carp, Ctenopharyngodon idellus. Eur J Biochem/FEBS, 2003, 270: 3010–3017

Hall JR, Richards RC, MacCormack TJ, Ewart KV, Driedzic WR. Cloning of GLUT3 cDNA from Atlantic cod (Gadus morhua) and expression of GLUT1 and GLUT3 in response to hypoxia. Biochim Biophys Acta, 2005, 1730: 245–252

Terova G, Forchino A, Rimoldi S, Brambilla F, Antonini M, Saroglia M. Bio-Mos: an effective inducer of dicentracin gene expression in European sea bass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol, 2009, 153: 372–377

Chou CF, Tohari S, Brenner S, Venkatesh B. Erythropoietin gene from a teleost fish, Fugu rubripes. Blood, 2004, 104: 1498–1503

Chu CY, Cheng CH, Chen GD, Chen YC, Hung CC, Huang KY, Huang CJ. The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS Lett, 2007, 581: 4265–4271

Paffett-Lugassy N, Hsia N, Fraenkel PG, Paw B, Leshinsky I, Barut B, Bahary N, Caro J, Handin R, Zon LI. Functional conservation of erythropoietin signaling in zebrafish. Blood, 2007, 110: 2718–2726

Pierron F, Baudrimont M, Gonzalez P, Bourdineaud JP, Elie P, Massabuau JC. Common pattern of gene expression in response to hypoxia or cadmium in the gills of the European glass eel (Anguilla anguilla). Environ Sci Technol, 2007, 41: 3005–3011

Vuori KA, Soitamo A, Vuorinen PJ, Nikinmaa M. Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1alpha) and consecutive gene expression. Aquat Toxicol, 2004, 68: 301–313

Yu RM, Ng PK, Tan T, Chu DL, Wu RS, Kong RY. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). Aquat Toxicol, 2008, 90: 235–242

Wang D, Zhong XP, Qiao ZX, Gui JF. Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress. J Exp Biol, 2008, 211: 2700–2706

Stevenson TJ, Trinh T, Kogelschatz C, Fujimoto E, Lush ME, Piotrowski T, Brimley CJ, Bonkowsky JL. Hypoxia disruption of vertebrate CNS pathfinding through ephrinB2 is rescued by magnesium. PLoS Genet, 2012, 8: e1002638

Barriga EH, Maxwell PH, Reyes AE, Mayor R. The hypoxia factor Hif-1alpha controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol, 2013, 201: 759–776

Zhang LL, Zhou Q. CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci, 2014, 57: 639–640