The guanine-nucleotide-exchange factor BopE from <i>Burkholderia pseudomallei</i> adopts a compact version of the <i>Salmonella</i> SopE/SopE2 fold and undergoes a closed-to-open conformational change upon interaction with Cdc42
Tóm tắt
Từ khóa
Tài liệu tham khảo
Brett, 2000, Pathogenesis of and immunity to melioidosis, Acta Tropica, 74, 201, 10.1016/S0001-706X(99)00071-6
Currie, 2000, Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature, Clin. Infect. Dis., 31, 981, 10.1086/318116
Currie, 2000, Melioidosis: acute and chronic disease, relapse and re-activation, Trans. R. Soc. Trop. Med. Hyg., 94, 301, 10.1016/S0035-9203(00)90333-X
Chaowagul, 1993, Relapse in melioidosis – incidence and risk factors, J. Infect. Dis., 168, 1181, 10.1093/infdis/168.5.1181
Wilkinson, 1981, Glanders: medicine and veterinary medicine in common pursuit of a contagious disease, Med. Hist., 25, 363, 10.1017/S0025727300034876
Rotz, 2002, Public health assessment of potential biological terrorism agents, Emerg. Infect. Dis., 8, 225, 10.3201/eid0802.010164
Haque, 2006, A live experimental vaccine against Burkholderia pseudomallei elicits CD4(+) T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins, J. Infect. Dis., 194, 1241, 10.1086/508217
Stevens, 2004, Exploitation of host cells by Burkholderia pseudomallei, Int. J. Med. Microbiol., 293, 549, 10.1078/1438-4221-00292
Holden, 2004, Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei, Proc. Natl. Acad. Sci. U.S.A., 101, 14240, 10.1073/pnas.0403302101
Rainbow, 2002, Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei, J. Med. Microbiol., 51, 374, 10.1099/0022-1317-51-5-374
Attree, 2001, A second type III secretion system in Burkholderia pseudomallei: who is the real culprit?, Microbiology, 147, 3197, 10.1099/00221287-147-12-3197
Stevens, 2002, An inv/mxi-spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen, Mol. Microbiol., 46, 649, 10.1046/j.1365-2958.2002.03190.x
Johnson, 2005, The type III needle and the damage done, Curr. Opin. Struct. Biol., 15, 700, 10.1016/j.sbi.2005.10.007
Galàn, 2006, Protein delivery into eukaryotic cells by type III secretion machines, Nature, 444, 567, 10.1038/nature05272
Cornelis, 2000, Assembly and function of type III secretory systems, Annu. Rev. Microbiol., 54, 735, 10.1146/annurev.micro.54.1.735
Pallen, 2005, Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective, FEMS Microbiol. Rev., 29, 201, 10.1016/j.femsre.2005.01.001
Stevens, 2003, A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity, J. Bacteriol., 185, 4992, 10.1128/JB.185.16.4992-4996.2003
Wood, 1996, SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a Sip-dependent mechanism and promotes bacterial entry, Mol. Microbiol., 22, 327, 10.1046/j.1365-2958.1996.00116.x
Hardt, 1998, S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells, Cell, 93, 815, 10.1016/S0092-8674(00)81442-7
Bakshi, 2000, Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells, J. Bacteriol., 182, 2341, 10.1128/JB.182.8.2341-2344.2000
Stender, 2000, Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell, Mol. Microbiol., 36, 1206, 10.1046/j.1365-2958.2000.01933.x
Friebel, 2001, SopE and SopE2 from Salmonella typhimurium activate different sets of Rho GTPases of the host cell, J. Biol. Chem., 276, 34035, 10.1074/jbc.M100609200
Buchwald, 2002, Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE, EMBO J., 21, 3286, 10.1093/emboj/cdf329
Williams, 2004, Solution structure, backbone dynamics, and interaction with Cdc42 of Salmonella guanine nucleotide exchange factor SopE2, Biochemistry, 43, 11998, 10.1021/bi0490744
Cerione, 1996, The Dbl family of oncogenes, Curr. Opin. Cell Biol., 8, 216, 10.1016/S0955-0674(96)80068-8
Snyder, 2002, Structural basis for the selective activation of Rho GTPases by Dbl exchange factors, Nat. Struct. Biol., 9, 468, 10.1038/nsb796
Rehmann, 2007, Capturing cyclic nucleotides in action: snapshots from crystallographic studies, Nat. Rev. Mol. Cell Biol., 8, 63, 10.1038/nrm2082
Schlumberger, 2003, Amino acids of the bacterial toxin SopE involved in G nucleotide exchange on Cdc42, J. Biol. Chem., 278, 27149, 10.1074/jbc.M302475200
Upadhyay, 2004, Biophysical characterization of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei, Biochim. Biophys. Acta, 1698, 111, 10.1016/j.bbapap.2003.11.004
Wu, 2004, Assignment of the 1H, 13C and 15N resonances of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei, J. Biomol. NMR, 29, 215, 10.1023/B:JNMR.0000019244.41446.14
Delaglio, 1995, NMRPipe: a multidimensional spectral processing system based on Unix pipes, J. Biomol. NMR, 6, 277, 10.1007/BF00197809
Macura, 1980, Elucidation of cross-relaxation in liquids by two-dimensional NMR spectroscopy, J. Phys., 41, 95
Zhang, 1994, Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed-field gradient NMR techniques, J. Biomol. NMR, 4, 845, 10.1007/BF00398413
Pascal, 1994, Simultaneous acquisition of 15N-edited and 13C-edited NOE spectra of proteins dissolved in H2O, J. Magn. Reson. Ser. B, 103, 197, 10.1006/jmrb.1994.1031
Chou, 2001, A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles, J. Biomol. NMR, 21, 377, 10.1023/A:1013336502594
Ottiger, 1998, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra, J. Magn. Reson., 131, 373, 10.1006/jmre.1998.1361
Nilges, 1993, A calculation strategy for the structure determination of symmetrical dimers by 1H NMR, Proteins: Struct. Funct. Genet., 17, 297, 10.1002/prot.340170307
Cornilescu, 1999, Protein backbone angle restraints from searching a database for chemical shift and sequence homology, J. Biomol. NMR, 13, 289, 10.1023/A:1008392405740
Schwieters, 2003, The Xplor-NIH NMR molecular structure determination package, J. Magn. Reson., 160, 65, 10.1016/S1090-7807(02)00014-9
Schwieters, 2006, Using Xplor-NIH for NMR molecular structure determination, Prog. Nucl. Magn. Res. Spectrosc., 48, 47, 10.1016/j.pnmrs.2005.10.001
Schwieters, 2001, The VMD-Xplor visualization package for NMR structure refinement, J. Magn. Reson., 149, 239, 10.1006/jmre.2001.2300
Laskowski, 1996, AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR, J. Biomol. NMR, 8, 477, 10.1007/BF00228148
Rudolph, 1999, Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for Rho GTPases, J. Biol. Chem., 274, 30501, 10.1074/jbc.274.43.30501
McAlister, 1996, NMR analysis of interacting soluble forms of the cell–cell recognition molecules CD2 and CD48, Biochemistry, 35, 5982, 10.1021/bi952756u
Self, 1995, Measurement of intrinsic nucleotide exchange and GTP hydrolysis rates, Methods Enzymol., 256, 67, 10.1016/0076-6879(95)56010-6
Hardt, 1998, S. Typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells, Cell, 93, 815, 10.1016/S0092-8674(00)81442-7
Friebel, 2000, Purification and biochemical activity of Salmonella exchange factor SopE, Meth. Enzymol., 325, 82, 10.1016/S0076-6879(00)25433-5