The global population of mesoscale convective complexes

Quarterly Journal of the Royal Meteorological Society - Tập 123 Số 538 - Trang 389-405 - 1997
Arlene Laing1, J. Michael Fritsch1
1The Pennsylvania State University USA

Tóm tắt

AbstractA global set of 714 mesoscale convective complexes is compiled and some of the common properties of the convective systems are identified and examined from a global perspective. the data set includes date of occurrence, time of first storms, initiation, maximum extent, termination, duration, cold‐cloud shield areas, and tracks from initiation to termination.It is found that the typical convective complex is nocturnal, generates a cold‐cloud shield area of approximately 350 000 km2, and persists for about 10 h. the largest systems and most persistent systems tend to occur near the summer solstices. For the globe, about 400 systems occur each year, primarily over land areas. Most systems develop in favoured zones, although some activity occurs over every continent (except Antarctica) and all major oceans. the concentration of activity into favoured zones indicates that there must be special dynamic and/or thermodynamic conditions necessary for convection to organize into convective complexes.Activity is strongly tied to the solar day, and shifts from 35°S in early January to about 50°N during the boreal summer and back to 35°S by December. Within the northern hemisphere there is a pronounced poleward migration as the jet stream shifts northward. Relatively little migration occurs in the ocean‐dominated southern hemisphere where the subtropical jet remains quasi‐stationary over the convective‐complex regions.The nocturnal life cycles, copious rainfall, large cloud shields, and great frequency of mesoscale convective complexes suggest that they may be significant contributors to the global hydrologic cycle and earth‐system energy budget.

Từ khóa


Tài liệu tham khảo

10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2

10.1175/1520-0477(1987)068<0004:TUOWPI>2.0.CO;2

10.1002/qj.49710243209

10.1175/1520-0477-38.5.283

10.1002/qj.49707733211

10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2

10.1175/1520-0493(1995)123<2978:LSCFFT>2.0.CO;2

10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2

10.1175/1520-0442(1988)001<0867:COSEOT>2.0.CO;2

Devlin K. I.1995‘Application of the 85 GHz ice scattering signature to a global study of mesoscale convective systems’. M.S. thesis Texas A&M University

10.1175/1520-0493(1989)117<2782:COTAAT>2.0.CO;2

10.1175/1520-0450(1981)020<0009:CDMWSA>2.0.CO;2

10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2

10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2

10.1175/1520-0493(1994)122<0608:ACSLPI>2.0.CO;2

10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2

10.1029/JD095iD11p18687

10.1175/1520-0493(1992)120<1301:CAWAMT>2.0.CO;2

Junker N. W. Scheidner R. S.andScofield R. A.1995‘The meteorological conditions associated with the Great Midwest Flood of 1993’. pp.13–17in Preprint 14th conference on weather analysis and forecasting (J4) 15‐20 Jan. Dallas Texas USA. American Meteorological Society

Laing A. G.1992‘Mesoscale convective complexes over Africa and Indian subcontinent’. M.S. thesis the Pennsylvania State University. (Available from the Dept. of Meteorology 503 Walker Building Pennsylvania State University University Park PA 16802 USA)

10.1175/1520-0442(1993)006<0911:MCCOTI>2.0.CO;2

10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2

10.1175/1520-0493(1976)104<0268:RCOTCP>2.0.CO;2

10.1175/1520-0493(1993)121<3234:SCARPO>2.0.CO;2

10.1175/1520-0493(1992)120<0392:SCODCS>2.0.CO;2

10.1175/1520-0493(1993)121<0037:DVAMBE>2.0.CO;2

10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2

10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2

10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2

10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2

10.1175/1520-0493(1992)120<1851:EGOMCC>2.0.CO;2

Miller D.1990‘Mesoscale convective complexes in the western Pacific region’. M.S. thesis the Pennsylvania State University. (Available from the Dept. of Meteorology 503 Walker Building Pennsylvania State University University Park PA 16802 USA)

10.1175/1520-0493(1991)119<2978:MCCITW>2.0.CO;2

10.1175/1520-0493(1993)121<0482:RFOSTC>2.0.CO;2

Rossow W. B., 1985, International Satellite Cloud Climatology Project description of reduced radiance data

10.1175/1520-0493(1995)123<2070:TMSOSP>2.0.CO;2

Scofield R. A.andNaimeng L.1994‘The use of satellite imagery during the great floods of 1993’. pp.345–350in Preprints Seventh conference on satellite meteorology and oceanography June 6‐10 Monterey CA USA

Tollerud E. I.andCollander R. S.1993‘Mesoscale convective systems and extreme rainfall in the central United States. Extreme hydrological events: precipitation floods and droughts’. Proceedings of the Yokohama Symposium July 1993. IAHS Publ. no. 213

Tollerud E. I.andRodger D. M.1991‘The seasonal and diurnal cycle of mesoscale convection and precipitation in the central United States: Interpreting a 10‐year satellite‐based climatology of mesoscale convective complexes’. Pp.63–70in Preprints Seventh conference on applied meteorology Salt Lake City Utah USA. American Meteorological Society

Tollerud E. I. Augustine J. A.andJamison B. D.1992‘Cloud top characteristics of mesoscale convective systems in 1986’. Preprints Sixth conference on satellite meteorology and oceanography 4‐10 Jan. 1992 Atlanta GA USA. American Meteorological Society

10.1029/JD092iD08p09591

10.1175/1520-0469-37.7.1521

10.1175/1520-0493(1983)111<1919:ALLMCC>2.0.CO;2

Winston J. S. Gruber A. Gray T. I.Jr. Varnadore M. S. Earnest C. L.andMannello L. P.1979‘Earth‐Atmosphere Radiation Budget analyses derived from NOAA satellite data June 1974‐February 1978. Vol 1.’ (Available from US Department of Commerce National Oceanic and Atmospheric Administration National Environmental Satellite Service)

10.1175/1520-0493(1988)116<2660:ANIOAC>2.0.CO;2