The genetic bases of andrological subfertility

Peter H. Vogt1
1Sektion Molekulare Genetik und Fertilitätsstörungen, Abteilung Gynäkol. Endokrinologie und Fertilitätsstörungen, Universitätsklinikum Heidelberg, Voßstraße 9, 69115, Heidelberg, Deutschland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Van Assche E, Bonduelle M, Tournaye H et al. (1996 ) Cytogenetics of infertile men. Hum Reprod; 11: 1–24

Egozcue S, Blanco J, Vendrell JM et al. (2000) Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod 6: 93–105

Tiepolo L, Zuffardi O (1976) Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet 28: 119–124

Samli H, Samli MM, Solak M, Imirzalioglu N. (2006) Genetic anomalies detected in patients with non-obstructive azoospermia and oligozoospermia. Arch Androl 52: 263–267

Faraut T, Mermet MA, Demongeot J, Cohen O. (2000) Cooperation of selection and meiotic mechanisms in the production of imbalances in reciprocal translocations. Cytogenet Cell Genet 88: 15–21

Pang MG, Hoegerman SF, Cuticchia AJ et al. (1999) Detection of aneuploidy for chromosomes 4, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 21, X, and Y by fluorescence in-situ hybridization in spermatozoa from nine patients with oligoasthenoteratozoospermia undergoing intracytoplasmatic sperm injection. Hum Reprod 14: 1266–1273

Eils R, Uhrig S, Saracoglu K et al. (1998) An optimized fully automated system for fast and accurate identification of chromosomal rearrangements by multiplex-FISH (M-FISH). Cytogenet Cell Genet 82: 160–171

Bonduelle M, Van Assche E, Joris H et al. (2002) Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum Reprod 17: 2600–2614

Miharu N (2005) Chromosome abnormalities in sperm from infertile men with normal somatic karyotypes: oligozoospermia. Cytogenet Genome Res 111: 347–351

Shi Q, Martin RH (2001) Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities and in infertile men. Reproduction 121: 655–666

Vogt PH (2005) Azoospermia factor (AZF) in Yq11: towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod BioMed Online 10: 81–93

Krausz C, Degl’Innocenti S (2006) Y chromosome and male infertility: update. Front Biosci 11: 3049–3061

Foresta C, Ferlin A, Moro E (2000) Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet 9: 1161–1169

Krausz C, Degl’Innocenti S, Nuti F et al. (2006) Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet 15: 2673–2681

Ditton HJ, Zimmer J, Kamp C et al. (2004) The AZFa Gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 13: 2333–2341

Repping S, Skaletsky H, Lange J et al. (2002) Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 71: 906–922

Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al. (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423: 825–837

Jobling MA, Tyler-Smith C (2003) The human Y chromosome: an evolutionary marker comes of age. Nat Rev Genet 4: 598–612

Vogt PH (2005) AZF deletions in Y-chromosonal haplogroups: history and update based on sequence. Hum Reprod Update 11: 319–336

Fernandes S, Paracchini S, Meyer LH et al. (2004) A large AZFc deletion removes DAZ3/DAZ4 and nearby genes from men in Y haplogroup N. Am J Hum Genet 74: 180–187

Machev N, Saut N, Longepied G et al. (2004) Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J Med Genet 41: 814–825

Repping S, Skaletsky H, Brown L et al. (2003) Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 35: 247–251

Repping S, van Daalen SK, Korver CM et al. (2004) A family of human Y chromosomes has dispersed throughout northern Eurasia despite a 1.8-Mb deletion in the azoospermia factor c region. Genomics 83: 1046–1052

Quintana-Murci L, Krausz C, Heyer E et al. (2001) The relationship between Y chromosome DNA haplotypes and Y chromosome deletions leading to male infertility. Hum Genet 108: 55–58

Siffroi JP, Bourhis C, Krausz C et al. (2000) Sex chromosome mosaicism in males carrying Y chromosome long arm deletions. Hum Reprod 15: 2559–2562

Jaruzelska J, Korcz A, Wojda A et al. (2001) Mosaicism for 45X cell line may accentuate the severity of spermatogenic defects in men with AZFc deletion. J Med Genet 38: 798–802

Papadimas J, Goulis DG, Giannouli C et al. (2001) Ambiguous genitalia 45X/46XY mosaic karyotype and Y chromosome microdeletions in a 17-year-old man. Fertil Steril 76: 1261–1263

Patsalis PC, Sismani C, Quintana-Mursi L et al. (2002) Effects of transmission of Y chromosome AZFc deletions. Lancet 360: 1222–1224

Chang HJ, Clark RD, Bachman H (1990) The phenotype of 45X/46XY mosaicism: an analysis of 92 prenatally diagnosed cases. Am J Hum Genet 46: 156–167

Oates RD, Amos JA (2001) The genetic basis of congenital bilateral absence of the vas deferens and cystic fibrosis. J Androl 15: 1–8

Quinton R, Duke VM, de Zoysa PA et al. (1996) The neuroradiology of Kallmann’s syndrome: a genotypic and phenotypic analysis. J Clin Endocrinol Metab 81: 3010–3017

Gottlieb B, Lombroso R, Beitel LK et al. (2005) Molecular pathology of the androgen receptor in male (in)fertility. Reprod Biomed Online 10: 42–48

Aittomaki K (1998) FSH receptor defects and reproduction. In: Kempers RD, Cohen J, Haney AF, Younger JB (eds) Fertility and reproductive medicine. Elsevier Science BV, Amsterdam, pp 761–788

Sultan C, Lumbroso S (1998) LH receptor defects. In: Kempers RD, Cohen J, Haney AF, Younger JB (eds) Fertility and reproductive medicine. Elsevier Science BV, Amsterdam, pp 769–782

Tomboc M, Lee PA, Mitwally MF et al. (2000) Insulin-like 3/relaxin-like factor gene mutations are associated with cryptorchidism. J Clin Endocrinol Metab 85: 4013–4018

Gorlov IP, Kamat A, Bogatcheva NV et al. (2002) Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet 11: 2309–2318

Rovio AT, Marchington DR, Donat S et al. (2001) Mutations at the mitochondrial DNA polymerase. (POLG) locus associated with male infertility. Nature Genet 29: 261–262

Ellsworth RE, Jamison DC, Touchman JW et al. (2000) Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. Proc Natl Acad Sci USA 97: 1172–1177

Estivill X (1996) Complexity in a monogenic disease. Nature Genet 12: 348–350

Haardt M, Benharouga M, Lechardeur D et al. (1999) C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis a novel class of mutation. J Biol Chem 274: 21873–21877

Girodon E, Cazeneuve C, Lebargy F et al. (1997) CFTR gene mutations in adults with disseminated bronchiectasis. Eur J Hum Genet 5: 149–155

Dequeker E, Cuppens H, Dodge J et al. (2000) Recommendations for quality improvement in genetic testing for cystic fibrosis. European Concerted Action on Cystic Fibrosis. Eur J Hum Genet 8: 2–24

Kiesewetter S, Macek M Jr, Davis C et al. (1993) A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 5: 274–278

Mak V, Jarvi KA, Zielenski J et al. (1997) Higher proportion of intact exon 9 CFTR mRNA in nasal epithelium compared with vas deferens. Hum Mol Genet 6: 2099–2107

Patrizio P, Asch RH, Handelin B, Silber SJ (1993) Aetiology of congenital absence of vas deferens: genetic study of three generations. Hum Reprod 8: 215–220

Franco B, Guioli S, Pragliola A et al. (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353: 529–536

Suarez-Quian CA, Martinez-Garcia F, Nistal M, Regadera J (1999) Androgen receptor distribution in adult human testis. J Clin Endocrinol Metab 84: 350–358

Tut TG, Ghadessy FJ, Trifiro MA et al. (1997) Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation impaired sperm production and male infertility. J Clin Endocrinol Metab 82: 3777–3782

Hiort O, Holterhus P-M (2003) Androgen insensitivity and male infertility. Int J Androl 26: 16–20

Rajpert-De Meyts E, Leffers H, Petersen JH et al. (2002) CAG repeat length in androgen-receptor gene and reproductive variables in fertile and infertile men. Lancet 5: 44–46

Dadze S, Wieland C, Jakubiczka S et al. (2000) The size of the CAG repeat in exon 1 of the androgen receptor gene shows no significant relationship to impaired spermatogenesis in an infertile Caucasoid sample of German origin. Mol Hum Repod 6: 207–214

Thangaraj K, Joshi MB, Reddy AG et al. (2002) CAG repeat expansion in the androgen receptor gene is not associated with male infertility in Indian populations. J Androl 23: 815–818

La Spada AR, Wilson EM, Lubahn DB et al. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79

Marques CJ, Carvalho F, Sousa M, Barros A (2004) Genomic imprinting in disruptive spermatogenesis. Lancet 363: 1700–1702

Marques CJ, Sousa S, Fernandes S et al. (2006) Epigenetic status of imprinted genese in human testicular spermatozoa. Hum Reprod 21 [Suppl 1]: i199

Kaneda M, Okano M, Hata K et al. (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429: 900–903

Hata K, Kusumi M, Yokomine T et al. (2006) Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Mol Reprod Dev 73: 116–122

Vidal F, Navarro J, Templado C et al. (1984) Synaptonemal complex studies in a mosaic 46,XY/47,XXY male. Hum Genet 66: 306–308