The gap between clinical gaze and systematic assessment of movement disorders after stroke
Tóm tắt
Movement disorders after stroke are still captured by clinical gaze and translated to ordinal scores of low resolution. There is a clear need for objective quantification, with outcome measures related to pathophysiological background. Neural and non-neural contributors to joint behavior should be separated using different measurement conditions (tasks) and standardized input signals (force, position and velocity). We reviewed recent literature for the application of biomechanical and/or elektromyographical (EMG) outcome measures under various measurement conditions in clinical research. Since 2005, 36 articles described the use of biomechanical and/or EMG outcome measures to quantify post-stroke movement disorder. Nineteen of the articles strived to separate neural and non-neural components. Only 6 of the articles measured biomechanical and EMG outcome measures simultaneously, while applying active and passive tasks and multiple velocities. The distinction between neural and non-neural components to separately assess paresis, stiffness and muscle overactivity is not commonplace yet, while a large gap is to be bridged to attain reproducible and comparable results. Pathophysiologically clear concepts, substantiated with a comprehensive and concise measuring protocol will help professionals to identify and treat limiting factors in movement capabilities of post-stroke patients.
Tài liệu tham khảo
Dietz V, Sinkjaer T: Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 2007, 6: 725-733. 10.1016/S1474-4422(07)70193-X
Meskers CG, Schouten AC, de Groot JH, de VE, van Hilten BJ, van der Helm FC, et al.: Muscle weakness and lack of reflex gain adaptation predominate during post-stroke posture control of the wrist. J Neuroeng Rehabil 2009, 6: 29. 10.1186/1743-0003-6-29
Bakheit AM, Fheodoroff K, Molteni F: Response to Lindbergs et al’.s and Ward’s commentaries. J Rehabil Med 2011, 43: 815. 10.2340/16501977-0868
Bakheit AM, Fheodoroff K, Molteni F: Spasticity or reversible muscle hypertonia? J Rehabil Med 2011, 43: 556-557. 10.2340/16501977-0817
Lindberg PG, Maier MA, Borg J: Commentary on “Spasticity or reversible muscle hypertonia?”. J Rehabil Med 2011, 43: 812. 10.2340/16501977-0857
Pandyan AD, Gregoric M, Barnes MP, Wood D, van WF, Burridge J, et al.: Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 2005, 27: 2-6. 10.1080/09638280400014576
Ward AB: Commentary on “Spasticity or Reversible Muscle Hypertonia?”. J Rehabil Med 2011, 43: 813-814. 10.2340/16501977-0867
Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H: A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin Rehabil 1999, 13: 373-383. 10.1191/026921599677595404
Platz T, Eickhof C, Nuyens G, Vuadens P: Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil 2005, 27: 7-18. 10.1080/09638280400014634
Gracies JM: Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle Nerve 2005, 31: 552-571. 10.1002/mus.20285
Gracies JM: Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve 2005, 31: 535-551. 10.1002/mus.20284
Burridge JH, Wood DE, Hermens HJ, Voerman GE, Johnson GR, van WF, et al.: Theoretical and methodological considerations in the measurement of spasticity. Disabil Rehabil 2005, 27: 69-80. 10.1080/09638280400014592
Wood DE, Burridge JH, Van Wijck FM, McFadden C, Hitchcock RA, Pandyan AD, et al.: Biomechanical approaches applied to the lower and upper limb for the measurement of spasticity: a systematic review of the literature. Disabil Rehabil 2005, 27: 19-32. 10.1080/09638280400014683
Malhotra S, Pandyan AD, Day CR, Jones PW, Hermens H: Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil 2009, 23: 651-658. 10.1177/0269215508101747
Calota A, Levin MF: Tonic Stretch Reflex Threshold as a Measure of Spasticity: Implications for Clinical Practice. Topics in Stroke Rehabilitation 2009, 16: 177-188. 10.1310/tsr1603-177
Garland SJ, Gray VL, Knorr S: Muscle activation patterns and postural control following stroke. Mot Control 2009, 13: 387-411.
Cousins E, Ward A, Roffe C, Rimington L, Pandyan A: Does low-dose botulinum toxin help the recovery of arm function when given early after stroke? A phase II randomized controlled pilot study to estimate effect size. Clin Rehabil 2010, 24: 501-513. 10.1177/0269215509358945
Lebiedowska MK, Fisk JR: Knee resistance during passive stretch in patients with hypertonia. Journal of Neuroscience Methods 2009, 179: 323-330. 10.1016/j.jneumeth.2009.02.005
Burridge JH, Turk R, Notley SV, Pickering RM, Simpson DM: The relationship between upper limb activity and impairment in post-stroke hemiplegia. Disability and Rehabilitation 2009, 31: 109-117. 10.1080/09638280701824699
Turk R, Notley SV, Pickering RM, Simpson DM, Wright PA, Burridge JH: Reliability and Sensitivity of a Wrist Rig to Measure Motor Control and Spasticity in Poststroke Hemiplegia. Neurorehabilitation and Neural Repair 2008, 22: 684-696. 10.1177/1545968308315599
Calota A, Feldman AG, Levin MF: Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin Neurophysiol 2008, 119: 2329-2337. 10.1016/j.clinph.2008.07.215
Malhotra S, Cousins E, Ward A, Day C, Jones P, Roffe C, et al.: An investigation into the agreement between clinical, biomechanical and neurophysiological measures of spasticity. Clin Rehabil 2008, 22: 1105-1115. 10.1177/0269215508095089
Chung SG, Van Rey E, Bai ZQ, Rymer WZ, Roth EJ, Zhang LQ: Separate quantification of reflex and nonreflex components of spastic hypertonia in chronic hemiparesis. Archives of Physical Medicine and Rehabilitation 2008, 89: 700-710. 10.1016/j.apmr.2007.09.051
Voerman GE, Burridge JH, Hitchcock RA, Hermens HJ: Clinometric properties of a clinical spasticity measurement tool. Disability and Rehabilitation 2007, 29: 1870-1880. 10.1080/09638280601143752
Fleuren JF, Nederhand MJ, Hermens HJ: Influence of posture and muscle length on stretch reflex activity in poststroke patients with spasticity. Archives of Physical Medicine and Rehabilitation 2006, 87: 981-988. 10.1016/j.apmr.2006.03.018
Ansari NN, Naghdi S, Hasson S, Rastgoo M: Efficacy of therapeutic ultrasound and infrared in the management of muscle spasticity. Brain Injury 2009, 23: 632-638. 10.1080/02699050902973939
Finley JM, Perreault EJ, Dhaher YY: Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Experimental Brain Research 2008, 188: 529-540. 10.1007/s00221-008-1383-z
Gracies JM, Lugassy M, Weisz DJ, Vecchio M, Flanagan S, Simpson DM: Botulinum Toxin Dilution and Endplate Targeting in Spasticity: A Double-Blind Controlled Study. Archives of Physical Medicine and Rehabilitation 2009, 90: 9-16. 10.1016/j.apmr.2008.04.030
Hyngstrom A, Onushko T, Chua M, Schmit BD: Abnormal Volitional Hip Torque Phasing and Hip Impairments in Gait Post Stroke. J Neurophysiol 2010, 103: 1557-1568. 10.1152/jn.00528.2009
Kim DY, Park CI, Chon JS, Ohn SH, Park TH, Bang IK: Biomechanical assessment with electromyography of post-stroke ankle plantar flexor spasticity. Yonsei Med J 2005, 46: 546-554. 10.3349/ymj.2005.46.4.546
Chen JJ, Wu YN, Huang SC, Lee HM, Wang YL: The use of a portable muscle tone measurement device to measure the effects of botulinum toxin type a on elbow flexor spasticity. Arch Phys Med Rehabil 2005, 86: 1655-1660. 10.1016/j.apmr.2005.03.019
Starsky AJ, Sangani SG, McGuire JR, Logan B, Schmit BD: Reliability of biomechanical spasticity measurements at the elbow of people poststroke. Arch Phys Med Rehabil 2005, 86: 1648-1654. 10.1016/j.apmr.2005.03.015
Galiana L, Fung J, Kearney R: Identification of intrinsic and reflex ankle stiffness components in stroke patients. Exp Brain Res 2005, 165: 422-434. 10.1007/s00221-005-2320-z
Kamper DG, Fischer HC, Cruz EG, Rymer WZ: Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil 2006, 87: 1262-1269. 10.1016/j.apmr.2006.05.013
Pandyan AD, Van Wijck FM, Stark S, Vuadens P, Johnson GR, Barnes MP: The construct validity of a spasticity measurement device for clinical practice: an alternative to the Ashworth scales. Disabil Rehabil 2006, 28: 579-585. 10.1080/09638280500242390
Barzi Y, Zehr EP: Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Clin Neurophysiol 2008, 119: 1443-1452. 10.1016/j.clinph.2008.02.016
Lee HM, Chen JJ, Wu YN, Wang YL, Huang SC, Piotrkiewicz M: Time course analysis of the effects of botulinum toxin type a on elbow spasticity based on biomechanic and electromyographic parameters. Arch Phys Med Rehabil 2008, 89: 692-699. 10.1016/j.apmr.2007.08.166
Hoffmann G, Kamper DG, Kahn JH, Rymer WZ, Schmit BD: Modulation of stretch reflexes of the finger flexors by sensory feedback from the proximal upper limb poststroke. J Neurophysiol 2009, 102: 1420-1429. 10.1152/jn.90950.2008
Black I, Nichols D, Pelliccio M, Hidler J: Quantification of reflex activity in stroke survivors during an imposed multi-joint leg extension movement. Exp Brain Res 2007, 183: 271-281. 10.1007/s00221-007-1045-6
Chardon M, Suresh NL, Rymer WZ: A new method for reflex threshold estimation in spastic muscles. Conf Proc IEEE Eng Med Biol Soc 2009, 2009: 5300-5303.
Hsu WL, Krishnamoorthy V, Scholz JP: An alternative test of electromyographic normalization in patients. Muscle Nerve 2006, 33: 232-241. 10.1002/mus.20458
Lin CC, Ju MS, Lin CW: The pendulum test for evaluating spasticity of the elbow joint. Arch Phys Med Rehabil 2003, 84: 69-74. 10.1053/apmr.2003.50066
Nuyens GE, De Weerdt WJ, Spaepen AJ Jr, Kiekens C, Feys HM: Reduction of spastic hypertonia during repeated passive knee movements in stroke patients. Arch Phys Med Rehabil 2002, 83: 930-935. 10.1053/apmr.2002.33233
Alibiglou L, Rymer WZ, Harvey RL, Mirbagheri MM: The relation between Ashworth scores and neuromechanical measurements of spasticity following stroke. J Neuroeng Rehabil 2008, 5: 18. 10.1186/1743-0003-5-18
Mirbagheri MM, Settle K, Harvey R, Rymer WZ: Neuromuscular abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke. J Neurophysiol 2007, 98: 629-637. 10.1152/jn.00049.2007
Fleuren JF, Snoek GJ, Voerman GE, Hermens HJ: Muscle activation patterns of knee flexors and extensors during passive and active movement of the spastic lower limb in chronic stroke patients. J Electromyogr Kinesiol 2009, 19: e301-e310. 10.1016/j.jelekin.2008.04.003
Kumar RT, Pandyan AD, Sharma AK: Biomechanical measurement of post-stroke spasticity. Age Ageing 2006, 35: 371-375. 10.1093/ageing/afj084
Bovend’Eerdt TJH, Dawes H, Sackley C, Izadi H, Wade DT: Mental techniques during manual stretching in spasticity - a pilot randomized controlled trial. Clin Rehabil 2009, 23: 137-145. 10.1177/0269215508097298
Nef T, Quinter G, Muller R, Riener R: Effects of Arm Training with the Robotic Device ARMin I in Chronic Stroke: Three Single Cases. Neurodegener Dis 2009, 6: 240-251. 10.1159/000262444
Pohl M, Mehrholz J, Rochstroh G, Ruckriem S, Koch R: Contractures and involuntary muscle overactivity in severe brain injury. Brain Injury 2007, 21: 421-432. 10.1080/02699050701311109
Kwakkel G, Meskers CG, van Wegen EE, Lankhorst GJ, Geurts AC, van Kuijk AA, et al.: Impact of early applied upper limb stimulation: the EXPLICIT-stroke programme design. BMC Neurol 2008, 8: 49. 10.1186/1471-2377-8-49