The fracture predictive ability of a musculoskeletal composite score in old men – data from the MrOs Sweden study
Tóm tắt
Detection of high-risk individuals for fractures are needed. This study assessed whether level of physical activity (PA) and a musculoskeletal composite score could be used as fracture predictive tools, and if the score could predict fractures better than areal bone mineral density (aBMD). MrOs Sweden is a prospective population-based observational study that at baseline included 3014 men aged 69–81 years. We assessed femoral neck bone mineral content (BMC), bone area, aBMD and total body lean mass by dual energy X-ray absorptiometry, calcaneal speed of sound by quantitative ultrasound and hand grip strength by a handheld dynamometer. PA was assessed by the Physical Activity Scale for the Elderly (PASE) questionnaire. We followed the participants until the date of first fracture, death or relocation (median 9.6 years). A musculoskeletal composite score was calculated as mean Z-score of the five measured traits. A Cox proportional hazards model was used to analyze the association between the musculoskeletal traits, the composite score and incident fractures (yes/no) during the follow-up period. Data are presented as hazard ratios (HR) with 95% confidence intervals (95% CI) for fracture for a + 1 standard deviation (SD) change (+ 1 Z-score) in the various musculoskeletal traits as well as the composite score. We used a linear regression model to estimate the association between level of PA, measured as PASE-score and the different musculoskeletal traits as well as the composite score. A + 1 SD higher composite score was associated with an incident fracture HR of 0.61 (0.54, 0.69), however not being superior to aBMD in fracture prediction. A + 1 SD higher PASE-score was associated with both a higher composite score and lower fracture incidence (HR 0.83 (0.76, 0.90)). The composite score was similar to femoral neck aBMD in predicting fractures, and also low PA predicted fractures. This highlights the need of randomized controlled trials to evaluate if PA could be used as a fracture preventive strategy.
Tài liệu tham khảo
Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16(Suppl 2):S3–7.
Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20(10):1633–50.
Rosengren BE, Bjork J, Cooper C, Abrahamsen B. Recent hip fracture trends in Sweden and Denmark with age-period-cohort effects. Osteoporos Int. 2017;28(1):139–49.
Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341(8837):72–5.
Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.
Rosengren BE, Ribom EL, Nilsson JA, Mallmin H, Ljunggren O, Ohlsson C, et al. Inferior physical performance test results of 10,998 men in the MrOS study is associated with high fracture risk. Age Ageing. 2012;41(3):339–44.
Njeh CF, Fuerst T, Diessel E, Genant HK. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int. 2001;12(1):1–15.
Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott AM, Hausherr E, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet. 1996;348(9021):145–9.
Coupland C, Wood D, Cooper C. Physical inactivity is an independent risk factor for hip fracture in the elderly. J Epidemiol Community Health. 1993;47(6):441–3.
Svejme O, Ahlborg HG, Karlsson MK. Physical activity reduces bone loss in the distal forearm in post-menopausal women--a 25-year prospective study. Scand J Med Sci Sports. 2014;24(1):159–65.
Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010;91(4):1123s–7s.
Fiatarone MA, O'Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330(25):1769–75.
Cronholm F, Rosengren BE, Dencker M, Karlsson MK. A school-based exercise intervention program from Tanner stage 1 until 5 Improves Composite Risk Score for Fracture in Both Genders. Denver: American Socitey for Bone and Mineral Research Annual Meeting; 2017.
Hars M, Biver E, Chevalley T, Herrmann F, Rizzoli R, Ferrari S, et al. Low lean mass predicts incident fractures independently from FRAX: a prospective cohort study of recent retirees. J Bone Miner Res. 2016;31(11):2048–56.
Moayyeri A, Adams JE, Adler RA, Krieg MA, Hans D, Compston J, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23(1):143–53.
Mellstrom D, Johnell O, Ljunggren O, Eriksson AL, Lorentzon M, Mallmin H, et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res. 2006;21(4):529–35.
Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.
Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet. 1996;348(9026):511–4.
de Kam D, Smulders E, Weerdesteyn V, Smits-Engelsman BC. Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: a systematic review of randomized controlled trials. Osteoporos Int. 2009;20(12):2111–25.
De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.
Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327–34.
Tveit M, Rosengren BE, Nilsson JA, Karlsson MK. Exercise in youth: high bone mass, large bone size, and low fracture risk in old age. Scand J Med Sci Sports. 2015;25(4):453–61.
Duan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18(10):1766–74.
Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam study. J Bone Miner Res. 2007;22(11):1781–90.
LaCroix AZ, Beck TJ, Cauley JA, Lewis CE, Bassford T, Jackson R, et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int. 2010;21(6):919–29.
Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, et al. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res. 2008;23(12):1892–904.
Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008;56(12):2234–43.
Gianoudis J, Bailey CA, Ebeling PR, Nowson CA, Sanders KM, Hill K, et al. Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J Bone Miner Res. 2014;29(1):182–91.
Lord SR, Ward JA, P W, Zivanovic E. The effects of a community exercise program on fracture risk factors in older women. Osteoporos Int. 1996;6(5):361–7.
Jarvinen TL, Sievanen H, Khan KM, Heinonen A, Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008;336(7636):124–6.