The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

AIP Advances - Tập 5 Số 9 - 2015
Gang Bai1,2, Zhiguo Liu3, Qiyun Xie2, Yunli Guo2, Wei Li2, Xiaobing Yan4
1Nanjing University 2 Laboratory of Solid State Microstructures, , Nanjing 210093, P. R. China
2Nanjing University of Posts and Telecommunications 1 Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, , Nanjing 210023, P. R. China
3Laboratory of Solid State Microstructures , Nanjing University , Nanjing 210093 , P. R. China.
4Hebei University 3 College of Electronic and information Engineering, , Baoding 071002, P. R. China

Tóm tắt

A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

Từ khóa


Tài liệu tham khảo

1985, Sov. Phys. JETP, 61, 1246

1986, Phys. Rev. B, 34, 5883, 10.1103/PhysRevB.34.5883

2006, J. Mater. Sci., 41, 53, 10.1007/s10853-005-5916-6

2013, Annu. Rev. Mater. Res., 43, 387, 10.1146/annurev-matsci-071312-121634

2013, Nanotechnology, 24, 432001, 10.1088/0957-4484/24/43/432001

2013, Adv. Mater., 25, 946, 10.1002/adma.201203852

2011, Nature Mater., 10, 963, 10.1038/nmat3141

2007, Phys. Rev. Lett., 99, 167601, 10.1103/PhysRevLett.99.167601

2001, Appl. Phys. Lett., 78, 2970, 10.1063/1.1361276

2001, Appl. Phys. Lett., 79, 4420, 10.1063/1.1426690

2002, Appl. Phys. Lett., 81, 3440, 10.1063/1.1518559

2003, Appl. Phys. Lett., 82, 3293, 10.1063/1.1570517

2005, Appl. Phys. Lett., 86, 072905, 10.1063/1.1868078

2006, Appl. Phys. Lett., 88, 232902, 10.1063/1.2211309

2008, Phys. Rev. B, 77, 125424, 10.1103/PhysRevB.77.125424

2010, Phys. Status Solidi B, 247, 213, 10.1002/pssb.200945394

2014, J. Appl. Phys., 116, 014307, 10.1063/1.4886315

2013, J. PHYS. D-APPL. PHYS., 46, 355502, 10.1088/0022-3727/46/35/355502

2013, J. SOLIDS. STRUCT., 50, 2781, 10.1016/j.ijsolstr.2013.04.020

2013, J. Appl. Phys., 113, 194102, 10.1063/1.4804949

2013, J. Appl. Phys., 113, 187222, 10.1063/1.4801988

2013, Nano Energy, 1, 13, 10.1016/j.nanoen.2011.09.001

2006, Appl. Phys. Lett., 89, 062904, 10.1063/1.2335369

2012, Phys. Rev. B, 85, 094107, 10.1103/PhysRevB.85.094107

2012, J. Appl. Phys., 112, 064111, 10.1063/1.4752397

2007, Appl. Phys. Lett., 91, 162903, 10.1063/1.2790476

2002, Jpn. J. Appl. Phys., 41, 7170, 10.1143/JJAP.41.7170

1996, Jpn. J. Appl. Phys., 35, L502, 10.1143/JJAP.35.L502

1997, Jpn. J. Apply. Phys., 36, 5169, 10.1143/JJAP.36.5169

2002, J. Appl. Phys., 91, 9288, 10.1063/1.1473675