The exponentiated half logistic skew-t distribution with GARCH-type volatility models

Scientific African - Tập 16 - Trang e01253 - 2022
O.D. Adubisi1,2, A. Abdulkadir2, U.A. Farouk2, H. Chiroma2
1Department of Mathematics and Statistics, Federal University Wukari, 200, Katsina-Ala Road, Wukari, Wukari, Nigeria
2Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria

Tài liệu tham khảo

Poon, 2003, Forecasting volatility in markets: a review, J. Econ. Lit., 41, 478, 10.1257/.41.2.478

Mandelbrot, 1963, The variation of certain speculative prices, J. Bus., 35, 394, 10.1086/294632

Nelson, 1991, Conditional heteroskedasticity in asset returns: a new approach, Econometrica, 59, 347, 10.2307/2938260

Altun, 2018, A new generalized of skew-t distribution with volatility models, J. Stat. Comput. Simul., 88, 1252, 10.1080/00949655.2018.1427240

Kosapattarapim, 2013

Ekum, 2018, Modeling volatility in selected Nigeria stock markets, Int. J. Econ. Financ. Manag., 3, 2545

Gyamerah, 2019, Modelling the volatility of Bitcoin returns using GARCH models, Quant. Financ. Econ., 3, 739, 10.3934/QFE.2019.4.739

Ngunyi, 2019, Modelling volatility dynamics of cryptocurrencies using GARCH models, J. Math. Financ., 9, 591, 10.4236/jmf.2019.94030

Yelamanchili, 2020, Modeling stock market monthly returns volatility using GARCH models under different distributions, Int. J. Account. Financ. Rev., 5, 42, 10.46281/ijafr.v5i1.425

Samson, 2020, Modelling volatility in Nigerian stock market: evidence from skewed error distributions, Int. J. Mod. Math. Sci., 18, 42

Harvey, 2008, 137

Liu, 2010, Forecasting S&P-100 stock index volatility: the role of volatility asymmetry and distributional assumption in GARCH models, Expert Syst. Appl., 37, 4928, 10.1016/j.eswa.2009.12.022

Nakajima, 2012, Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student-t distribution, Comput. Stat. Data Anal., 56, 3690, 10.1016/j.csda.2010.07.012

Harvey, 2013, 137

Harvey, 2013, EGARCH models with fat tails, skewness and leverage, Comput. Stat. Data Anal., 76, 320, 10.1016/j.csda.2013.09.022

Feng, 2017, A simulation study on the distributions of disturbances in the GARCH model, Cogent Econ. Financ., 5, 1, 10.1080/23322039.2017.1355503

Agboola, 2018, On the exponentiated skewed Student-t error distribution on some volatility models: evidence of standard and poor-500 index return, Asian J. Appl. Sci., 11, 38, 10.3923/ajaps.2018.38.45

Agboola, 2019, Some volatility modeling using new error innovation distribution, Int. Res. J. Appl. Sci., 1, 57

Calzolari, 2014, Estimating GARCH type models with symmetric stable innovations: indirect inference versus maximum likelihood, Comput. Stat. Data Anal., 76, 158, 10.1016/j.csda.2013.07.028

Cordeiro, 2014, The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Stat., 2014, 1, 10.1155/2014/864396

Jones, 2001, A skew t distribution, 269

Jones, 2003, A skew extension of the t-distribution, with applications, J. R. Stat. Soc. Ser. B, 65, 159, 10.1111/1467-9868.00378

Adubisi, 2021, Financial data and a new generalization of the skew-t distribution, Covenant J. Phys. Life Sci., 9, 1

Adubisi, 2021, The type i half logistic skew-t distribution: a heavy-tail model with inverted bathtub shaped hazard rate, Asian J. Probab. Stat., 14, 21, 10.9734/ajpas/2021/v14i430336

Taboga, 2017

Engle, 1982, Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987, 10.2307/1912773

Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, J. Econom., 31, 307, 10.1016/0304-4076(86)90063-1

Glosten, 1993, On the relation between the expected value and the volatility of the nominal excess return on stocks, J. Financ., 48, 1779, 10.1111/j.1540-6261.1993.tb05128.x

Brooks, 2003, Information criteria for GARCH model selection, Eur. J. Financ., 9, 557, 10.1080/1351847021000029188