The enhanced anticoagulation for graphene induced by COOH+ ion implantation

Nanoscale Research Letters - Tập 10 Số 1 - 2015
Xiaoqi Liu1, Ye Cao1, Mengli Zhao1, Jianhua Deng1, Xifei Li1, Dejun Li1
1Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR. Controllable N-doping of graphene. Nano Lett. 2010;10:4975–80.

Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2012;2:781–94.

Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010;8:4323–9.

Pinto AM, Goncalves IC, Magalhães FD. Graphene-based materials biocompatibility: a review. Colloids Surf B. 2013;111:188–202.

Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6:1–8.

Chen GY, Pang DW, Hwang SM, Tuan HY, Hua YC. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials. 2012;33:418–27.

Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, et al. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3:2461–4.

Ehlert N, Hoffmann A, Luessenhop T, Gross G, Mueller PP, Stieve M, et al. Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomater. 2011;7:1772–9.

Li SQ, Liu L, Tian HF, Hu JB. High density attachment of silver nanoparticles on NH+ 2 ion implanted indium tin oxide glass substrate. Acta Phys -Chim Sin. 2011;27:2671–6.

Li DJ, Niu L. Effects of COOH+ ion implantation on hemocompatibility of polypropylene. Sci China Ser E. 2002;45:666–70.

Cao W, Hu J, Li Q, Fang W. A novel NH2/ITO ion implantation electrode: preparation, characterization, and application in bioelectrochemistry. Electroanalysis. 2009;21:723–9.

Gao DM, Sun YY, Zhao Q, Hu JB, Li QL. Determination of hemoglobin at a novel NH2/ITO ion implantation modified electrode. Microchim Acta. 2008;160:241–6.

Zhang YT, Li MS, Zhao ML, Li DJ. Influence of polar functional groups introduced by COOH+ implantation on cell growth and anticoagulation of MWCNTs. J Mater Chem B. 2013;1:5543–9.

Guo MX, Li DJ, Zhao ML, Zhang YT, Deng XY, Geng DS, et al. NH2 + implantations induced superior hemocompatibility of carbon nanotubes. Nanoscale Res Lett. 2013;8:205–10.

Qin W, Li X, Bian WW, Fan XJ, Qi JY. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials. 2010;31:1007–16.

Zhang YT, Li DJ, Zhao ML, Guo MX, Deng XY. Difference in cytocompatibility between MWCNTs and carboxylic functionalized MWCNTs. Func Mater Lett. 2013;6:5–10.

Zhao ML, Li DJ, Zhang YT, Guo MX, Deng XY, Gu HQ, et al. In vitro comparison of the hemocompatibility of diamond-like carbon and carbon nitride coatings with different atomic percentages of N. Sci China Life Sci. 2012;55:343–8.

Zhao ML, Cao Y, Liu XQ, Deng JH, Gu HQ. Effect of nitrogen atomic percentage on N+-bombarded MWCNTs in cytocompatibility and hemocompatibility. Nanoscale Res Lett. 2014;9:142–50.

Zhao ML, Li DJ, Gu HQ, Guo MX, Zhang YT. In vitro cell adhesion and hemocompatibility of carbon nanotubes with CNx coating. Curr Nanosci. 2012;8:451–7.

Zhao ML, Li DJ, Yuan L, Yue YC, Liu H, Sun X. Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon. 2011;49:3125–33.

Li DJ, Niu LF. Cell attachment of polypropylene surface-modified by COOH+ ion implantation. Nucl Instrum Methods Phys Res Sect B. 2002;192:393–401.

Guo MX, Li DJ, Zhao ML, Zhang YT, Geng DS, Lushington A, et al. Nitrogen ion implanted graphene as thrombo-protective safer and cytoprotective alternative for biomedical applications. Carbon. 2013;61:321–8.

Cristina B, Patricia A, Patricia B, Marcos G, Clara B, Ricardo S, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon. 2013;65:156–64.

Li XF, Hu YH, Liu J. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance. Nanoscale. 2013;5:12607–15.

Li XF, Geng DS, Zhang Y. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun. 2011;13:822–5.

Li XF, Meng XB, Liu J. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater. 2012;22:1647–54.

Garaj S, Hubbard W, Golovchenko JA. Graphene synthesis by ion implantation. Appl Phys Lett. 2010;97:183103–6.

Li S, Cao W, Xia J, Hua J, Li Q. COOH+ ion implantation-modified indium tin oxide electrode for the direct electrochemistry of cytochrome c. Nucl Instrum Methods Phys Res Sect B. 2010;268:2235–40.

Li DJ, Cui FZ, Gu HQ. F+ ion implantation induced cell attachment on intraocular lens. Biomaterials. 1999;20:1889–96.

Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C. Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med. 2008;19:3603–9.

Sun TL, Feng L, Gao XF, Jiang L. Bioinspired surfaces with special wettability. Acc Chem Res. 2005;38:644–52.

Bolduc M, Terreault B, Reguer A, Shaffer E, St-Jacques RG. Selective modification of the tribological properties of aluminum through temperature and dose control in oxygen plasma source ion implantation. J Mater Res. 2003;18:2779–92.

Cervera M, Hernandez MJ, Piqueras J, Morant C, Prieto P, Elizalde E, et al. SiBCN synthesis by high-dose N++C++BF2+ ion implantation. J Vac Sci Technol A. 2004;22:640–5.

Abreu CM, Cristobal MJ, Figueroa R, Pena G, Perez MC. An XPS study on the influence of nitrogen implantation on the passive layers developed on different tempers of AA7075 aluminum alloy. Surf Interface Anal. 2010;42:592–6.

Ha SH, Jeong YS, Lee YJ. Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl Mat Interfaces. 2013;5:12295–303.

Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, et al. Hemocompatibility of titanium oxide films. Biomaterials. 2003;24:2177–87.

Gao JC, Li LC, Wang Y, Qiao LY. Corrosion resistance of alkali heat treated magnesium in bionics simulated body fluid. Rare Metal Mat Eng. 2005;30:903–10.

Alanazi A, Hirakuri KK. Blood compatibility of DLC films. Eur Cells Mater. 2010;20:15–20.

Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials. 2005;26:729–38.