Endocannabinoid 2-arachidonoylglycerol làm giảm giải phóng cytochrome c từ ty thể gan do canxi kích thích

Journal of bioenergetics - Tập 44 - Trang 273-280 - 2012
Patrizia Zaccagnino1, Susanna D’Oria1, Luigi Luciano Romano1, Almerinda Di Venere2,3, Anna Maria Sardanelli1, Michele Lorusso1
1Department of Basic Medical Sciences, University of Bari, Bari, Italy
2Department of Experimental Medicine and Biochemical Sciences, University of “Tor Vergata,” Rome, Italy
3IRCCS Neuromed, Pozzilli, Italy

Tóm tắt

2-Arachidonoylglicerol (2-AG) là một endocannabinoid mô phỏng các tác động dược lý của Δ9 tetrahydrocannabinol, thành phần gây tác động tâm lý của cây Cannabis sativa. Chất này có mặt trong nhiều mô động vật có vú như não, gan, lá lách, tim và thận, nơi mà nó có các tác động sinh học khác nhau, có thể thông qua thụ thể hoặc độc lập với sự kích hoạt thụ thể. Công trình này phân tích tác động của 2-AG lên chức năng ty thể gan. Kết quả cho thấy rằng 2-AG gây ra sự giảm đáng kể giải phóng cytochrome c nhạy cảm với ciclosporin A, được kích thích bởi canxi từ ty thể, một quá trình đại diện cho một sự kiện sớm của chương trình thải hợp bào chết. Sự sưng nở ma trận và sản xuất ROS nhạy cảm với ciclosporin, được đo dưới cùng điều kiện này, thì ngược lại, gần như không bị ảnh hưởng hoặc thậm chí tăng lên, theo thứ tự, bởi 2-AG. Hơn nữa, 2-AG được phát hiện kích thích hoạt động succinate oxidase ở trạng thái nghỉ và ức chế hoạt động ATP synthase FoF1 nhạy cảm với oligomycin. Tất cả các tác động này dường như liên quan đến việc thay đổi độ lỏng của màng ty thể phụ thuộc vào 2-AG, đã được đo lường thông qua sự phân cực tổng quát của huỳnh quang laurdan.

Từ khóa

#2-arachidonoylglycerol #cytochrome c #ty thể gan #thuốc endocannabinoid #apoptosis #sự phân cực huỳnh quang

Tài liệu tham khảo

Andreyev A, Fiskum G (1999) Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ 6(9):825–832. doi:10.1038/sj.cdd.4400565 Basavarajappa BS (2007) Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 14(3):237–246 Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A et al (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163(3):463–468. doi:10.1083/jcb.200305129 Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264(14):7826–7830 Brown AJ (2007) Novel cannabinoid receptors. Br J Pharmacol 152(5):567–575. doi:10.1038/sj.bjp. 0707481 Catanzaro G, Rapino C, Oddi S, Maccarrone M (2009) Anandamide increases swelling and reduces calcium sensitivity of mitochondria. Biochem Biophys Res Commun 388(2):439–442. doi:10.1016/j.bbrc.2009.08.037 Chan KM, Junger KD (1984) The effect of streptozocin-induced diabetes on the plasma membrane calcium uptake activity of rat liver. Diabetes 33(11):1072–1077 Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+ −dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255(1):357–360 Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34(5):605–613 Di Marzo V (1998) ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta 1392(2–3):153–175 Di Marzo V, Petrocellis LD (2006) Plant, synthetic, and endogenous cannabinoids in medicine. Annu Rev Med 57:553–574. doi:10.1146/annurev.med.57.011205.135648 Di Marzo V, Bisogno T, De Petrocellis L, Melck D, Orlando P, Wagner JA et al (1999) Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur J Biochem 264(1):258–267 Di Paola M, Cocco T, Lorusso M (2000) Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 39(22):6660–6668 Di Paola M, Zaccagnino P, Oliveros-Celis C, Lorusso M (2006) Arachidonic acid induces specific membrane permeability increase in heart mitochondria. FEBS Lett 580(3):775–781. doi:10.1016/j.febslet.2005.12.090 Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N (2003) Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci 23(21):7767–7775 Gaoni Y, Mechoulam R (1971) The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93(1):217–224 Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268(1):153–160 Hansson MJ, Mansson R, Morota S, Uchino H, Kallur T, Sumi T et al (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med 45(3):284–294. doi:S0891-5849(08)00208-6 Ito A, Ogishima T, Ou W, Omura T, Aoyagi H, Lee S et al (1985) Effects of synthetic model peptides resembling the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria. J Biochem 98(6):1571–1582 Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T et al (2001) Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol 134(3):563–570. doi:10.1038/sj.bjp. 0704293 Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M et al (2005) Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 128(3):742–755 Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380. doi:10.1152/physrev.00019.2008 Kondo S, Kondo H, Nakane S, Kodaka T, Tokumura A, Waku K et al (1998) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through CA2+ −dependent and -independent mechanisms. FEBS Lett 429(2):152–156 Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V et al (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125(3):677–687 Maciel EN, Vercesi AE, Castilho RF (2001) Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J Neurochem 79(6):1237–1245 Martin BR (1986) Cellular effects of cannabinoids. Pharmacol Rev 38(1):45–74 Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564. doi:10.1038/346561a0 McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367(Pt 2):541–548. doi:10.1042/BJ20011672 Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M et al (2000) Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141(1):118–126 Mukherjee S, Adams M, Whiteaker K, Daza A, Kage K, Cassar S et al (2004) Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors. Eur J Pharmacol 505(1–3):1–9. doi:10.1016/j.ejphar.2004.09.058 Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. doi:10.1038/365061a0 Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58(3):389–462. doi:10.1124/pr.58.3.2 Palleschi S, Silvestroni L (1996) Laurdan fluorescence spectroscopy reveals a single liquid-crystalline lipid phase and lack of thermotropic phase transitions in the plasma membrane of living human sperm. Biochim Biophys Acta 1279(2):197–202 Patel SP, Katyare SS (2006a) Effect of alloxan diabetes and subsequent insulin treatment on temperature kinetics properties of succinate oxidase activity in rat kidney mitochondria. J Membr Biol 213(1):31–37. doi:10.1007/s00232-006-0041-2 Patel SP, Katyare SS (2006b) Insulin-status-dependent modulation of FoF1-ATPase activity in rat liver mitochondria. Lipids 41(7):695–703 Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR et al (2002) Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 123(1):227–234 Piomelli D (2005) The endocannabinoid system: a drug discovery perspective. Curr Opin Investig Drugs 6(7):672–679 Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101. doi:10.1038/sj.bjp. 0707460 Schmid PC, Schwartz KD, Smith CN, Krebsbach RJ, Berdyshev EV, Schmid HH (2000) A sensitive endocannabinoid assay. The simultaneous analysis of N-acylethanolamines and 2-monoacylglycerols. Chem Phys Lipids 104(2):185–191 Schonfeld P, Wojtczak L (2007) Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta 1767(8):1032–1040. doi:10.1016/j.bbabio.2007.04.005 Siegmund SV, Qian T, de Minicis S, Harvey-White J, Kunos G, Vinod KY et al (2007) The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species. FASEB J 21(11):2798–2806. doi:10.1096/fj.06-7717com Sipe JC, Arbour N, Gerber A, Beutler E (2005) Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol 78(1):231–238. doi:10.1189/jlb.0205111 Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26(9):1015–1035 Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388(6644):773–778. doi:10.1038/42015 Studer RK, Ganas L (1989) Effect of diabetes on hormone-stimulated and basal hepatocyte calcium metabolism. Endocrinology 125(5):2421–2433 Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K et al (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215(1):89–97 Thomas BF, Compton DR, Martin BR (1990) Characterization of the lipophilicity of natural and synthetic analogs of delta 9-tetrahydrocannabinol and its relationship to pharmacological potency. J Pharmacol Exp Ther 255(2):624–630 Wang J, Ueda N (2009) Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat 89(3–4):112–119. doi:10.1016/j.prostaglandins.2008.12.002 Zaccagnino P, Saltarella M, D’Oria S, Corcelli A, Saponetti MS, Lorusso M (2009) N-arachidonylglycine causes ROS production and cytochrome c release in liver mitochondria. Free Radic Biol Med 47(5):585–592. doi:10.1016/j.freeradbiomed.2009.05.038 Zaccagnino P, Corcelli A, Baronio M, Lorusso M (2011) Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria. FEBS Lett 585(2):429–434. doi:10.1016/j.febslet.2010.12.032 Zias J, Stark H, Sellgman J, Levy R, Werker E, Breuer A et al (1993) Early medical use of cannabis. Nature 363(6426):215. doi:10.1038/363215a0