The eightfold path to non-enzymatic RNA replication
Tóm tắt
The first RNA World models were based on the concept of an RNA replicase - a ribozyme that was a good enough RNA polymerase that it could catalyze its own replication. Although several RNA polymerase ribozymes have been evolved in vitro, the creation of a true replicase remains a great experimental challenge. At first glance the alternative, in which RNA replication is driven purely by chemical and physical processes, seems even more challenging, given that so many unsolved problems appear to stand in the way of repeated cycles of non-enzymatic RNA replication. Nevertheless the idea of non-enzymatic RNA replication is attractive, because it implies that the first heritable functional RNA need not have improved replication, but could have been a metabolic ribozyme or structural RNA that conferred any function that enhanced protocell reproduction or survival. In this review, I discuss recent findings that suggest that chemically driven RNA replication may not be completely impossible.
Tài liệu tham khảo
Joyce GF: RNA evolution and the origins of life. Nature 1989, 338: 217–224.
Joyce GF, Orgel LE: Prospects for understanding the origin of the RNA world. In The RNA World. Edited by: Gesteland RF, Atkins JF. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993:1–25.
Orgel LE: Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 2004, 39: 99–123.
Powner MW, Gerland B, Sutherland JD: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459: 239–242.
Powner MW, Sutherland JD, Szostak JW: Chemoselective multicomponent one-pot assembly of purine precursors in water. J Am Chem Soc 2010, 132: 16677–88. Erratum in: J Am Chem Soc 2011, 133:4149–4150
Powner MW, Sutherland JD: Prebiotic chemistry: a new modus operandi. Philos Trans R Soc Lond B Biol Sci 2011, 366: 2870–2877.
Szostak JW, Bartel DP, Luisi PL: Synthesizing life. Nature 2001, 409: 387–390.
Szabó P, Scheuring I, Czárán T, Szathmáry E: In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 2002, 420: 340–343.
Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW: Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008, 454: 122–125.
Zhu TF, Szostak JW: Coupled growth and division of model protocell membranes. J Am Chem Soc 2009, 131: 5705–5713.
Gilbert W: Origin of life: The RNA world. Nature 1986, 319: 618.
Zaher HS, Unrau PJ: Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA 2007, 13: 1017–26.
Wochner A, Attwater J, Coulson A, Holliger P: Ribozyme-catalyzed transcription of an active ribozyme. Science 2011, 332: 209–12.
Acevedo OL, Orgel LE: Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long. J Mol Biol 1987, 197: 187–193.
Orgel LE: Molecular Replication. Nature 1992, 358: 203–209.
Bridson PK, Orgel LE: Catalysis of Accurate Poly(C)-directed Synthesis of 3'-5'-linked Oligoguanylates by Zn2+. J Mol Biol 1980, 144: 567–577.
Inoue T, Orgel LE: Oligomerization of (Guanosine 5'-phosphor)-2-methylimidazolide on Poly(C): An RNA Polymerase Model. J Mol Biol 1982, 162: 201–217.
Trevino SG, Zhang N, Elenko MP, Lupták A, Szostak JW: Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity. Proc Natl Acad Sci USA 2011, 108: 13492–13497.
Lauhon CT, Szostak JW: RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 1995, 117: 1246–1257.
Dieckmann T, Butcher SE, Sassanfar M, Szostak JW, Feigon J: Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. J Mol Biol 1997, 273: 467–478.
Travascio P, Bennet AJ, Wang DY, Sen D: A ribozyme and a catalytic DNA with peroxidase activity: Active sites versus cofactor-binding sites. Chem Biol 1999, 6: 779–787.
Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH: Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 1986, 83: 9373–9377.
Kierzek R, He L, Turner DH: Association of 2' - 5' oligoribonucleotides. Nuc Acids Res 1992, 20: 1685–1690.
Giannaris PA, Damha MJ: Oligoribonucleotides containing 2', 5'-phosphodiester linkages exhibit binding selectivity for 3', 5'-RNA over 3', 5'-ssDNA. Nuc Acids Res 1993, 21: 4742–4749.
Wasner M, Arion D, Borkow G, Noronha A, Uddin AH, Parniak MA, Damha MJ: Physicochemical and biochemical properties of 2', 5'-linked RNA and 2', 5'-RNA:3', 5'-RNA "hybrid" duplexes. Biochem 1998, 37: 7478–7486.
Eigen M: Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58: 465–523.
Budin I, Szostak JW: Physical effects underlying the transition from primitive to modern cell membranes. Proc Natl Acad Sci USA 2011, 108: 5249–5254.
Ferré-D'Amaré AR, Scott WG: Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2010, 2: a003574.
Kun A, Santos M, Szathmáry E: Real ribozymes suggest a relaxed error threshold. Nat Genet 2005, 37: 1008–1011.
Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA: The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nuc Acids Res 2011, 39: 8135–8147.
Ichida JK, Horhota A, Zou K, McLaughlin LW, Szostak JW: High fidelity TNA synthesis by Therminator polymerase. Nuc Acids Res 2005, 33: 5219–5225.
Huang MM, Arnheim N, Goodman MF: Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nuc Acids Res 1992, 20: 4567–4573.
Rajamani S, Ichida JK, Antal T, Treco DA, Leu K, Nowak MA, Szostak JW, Chen IA: Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. J Am Chem Soc 2010, 132: 5880–5885.
Testa SM, Disney MD, Turner DH, Kierzek R: Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Biochem 1999, 38: 16655–16662.
Caton-Williams J, Huang Z: Biochemistry of selenium-derivatized naturally occurring and unnatural nucleic acids. Chem Biodivers 2008, 5: 396–407.
Hassan AE, Sheng J, Zhang W, Huang Z: High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc 2010, 132: 2120–2121.
Ajitkumar P, Cherayil JD: Thionucleosides in transfer ribonucleic acid: diversity, structure, biosynthesis, and function. Microbiol Rev 1988, 52: 103–113.
Siegfried NA, Kierzek R, Bevilacqua PC: Role of unsatisfied hydrogen bond acceptors in RNA energetics and specificity. J Am Chem Soc 2010, 132: 5342–4.
Vogel SR, Deck C, Richert C: Accelerating chemical replication steps of RNA involving activated ribonucleotides and downstream-binding elements. Chem Commun (Camb) 2005, 39: 4922–4924.
Vogel SR, Richert C: Adenosine residues in the template do not block spontaneous replication steps of RNA. Chem Commun (Camb) 2007, 21: 1896–1898.
Diop-Frimpong B, Prakash TP, Rajeev KG, Manoharan M, Egli M: Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2'-O-[2-(methoxy)ethyl]-2-thiothymidines. Nuc Acids Res 2005, 33: 5297–307.
Mansy SS, Szostak JW: Thermostability of model protocell membranes. Proc Natl Acad Sci USA 2008, 105: 13351–13355.
Li X, Zhan ZY, Knipe R, Lynn DG: DNA-catalyzed polymerization. J Am Chem Soc 2002, 124: 746–747.
Li X, Hernandez AF, Grover MA, Hud NV, Lynn DG: Step-growth control in template-directed polymerization. Heterocycles 2011, 82: 1477–1488.
James KD, Ellington AD: Surprising fidelity of template-directed chemical ligation of oligonucleotides. Chem Biol 1997, 4: 595–605.
Horowitz ED, Engelhart AE, Chen MC, Quarles KA, Smith MW, Lynn DG, Hud NV: Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world. Proc Natl Acad Sci USA 2010, 107: 5288–5293.
Schrum JP, Ricardo A, Krishnamurthy M, Blain JC, Szostak JW: Efficient and rapid template-directed nucleic acid copying using 2'-amino-2', 3'-dideoxyribonucleoside-5'- phosphorimidazolide monomers. J Am Chem Soc 2009, 131: 14560–14570.
Rohatgi R, Bartel DP, Szostak JW: Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3'-5' phosphodiester bonds. J Am Chem Soc 1996, 118: 3340–3344.
Deck C, Jauker M, Richert C: Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat Chem 2011, 3: 603–8.
Gilham PT: An addition reaction specific for uridine and guanosine nucleotides and its application to the modification of ribonuclease action. J Am Chem Soc 1962, 84: 687–688.
Chu BCF, Wahl GM, Orgel LE: Derivatization of unprotected polynucleotides. Nuc Acids Res 1983, 11: 6513–6529.
Biron JP, Pascal R: Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution. J Am Chem Soc 2004, 126: 9198–9199.
Leman L, Orgel L, Ghadiri MR: Carbonyl sulfide-mediated prebiotic formation of peptides. Science 2004, 306: 283–286.
Leman LJ, Orgel LE, Ghadiri MR: Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 2006, 128: 20–21.
Ferris JP, Hill AR Jr, Liu R, Orgel LE: Synthesis of long prebiotic oligomers on mineral surfaces. Nature 1996, 381: 59–61.
Butzow JJ, Eichhorn GL: Interaction of metal ions with nucleic acids and related compounds. XVII. On the mechanism of degradation of polyribonucleotides and oligoribonucleotides by zinc(II) ions. Biochemistry 1971, 10: 2019–27.
Steitz TA, Steitz JA: A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 1993, 90: 6498–6502.
Brautigam CA, Steitz TA: Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 1998, 8: 54–63.
Woody AY, Eaton SS, Osumi-Davis PA, Woody RW: Asp537 and Asp812 in bacteriophage T7 RNA polymerase as metal ion-binding sites studied by EPR, flow-dialysis, and transcription. Biochem 1996, 35: 144–152.
Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA: Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 1999, 98: 811–824.
Cramer P, Bushnell DA, Kornberg RD: Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001, 292: 1863–1876.
Glavin DP, Bada JL, Brinton KL, McDonald GD: Amino acids in the Martian meteorite Nakhla. Proc Natl Acad Sci USA 1999, 96: 8835–8838.
Miller SL: Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harb Symp Quant Biol 1987, 52: 17–27.
Wang J, Yu P, Lin TC, Konigsberg WH, Steitz TA: Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Biochem 1996, 35: 8110–8119.
Shrestha LK, Shrestha RG, Iwanaga T, Aramaki K: Aqueous Phase Behavior of Diglycerol Fatty Acid Esters. J Disp Sci Tech 2007, 28: 883–891.
Morgan LA, Shanks WC III, Lovalvo DA, Johnson SY, Stephenson WJ, Pierce KL, Harlan SS, Finn CA, Lee G, Webring M, Schulze B, Dühn J, Sweeney R, Balistrieri L: Exploration and discovery in Yellowstone Lake: results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies. J Volc Geo Res 2003, 122: 221–242.
Ricardo A, Szostak JW: Origin of life on earth. Sci Am 2009, 301: 54–61.
Szostak JW: An optimal degree of physical and chemical heterogeneity for the origin of life? Philos Trans R Soc Lond B Biol Sci 2011, 366: 2894–2901.
Joyce GF, Schwartz AW, Miller SL, Orgel LE: The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 1987, 84: 4398–4402.