Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của salbutamol đến các kênh ion biểu mô phụ thuộc vào nguyên nhân gây ra hội chứng suy hô hấp cấp tính nhưng không phụ thuộc vào đường sử dụng
Tóm tắt
Chúng tôi đã điều tra ảnh hưởng của việc tiêm tĩnh mạch và tiêm khí quản salbutamol đến hình thái học và chức năng phổi, biểu hiện của các kênh ion, aquaporin và các dấu hiệu viêm, sự chết tế bào, cũng như tổn thương tế bào biểu mô/phân tầng phổi trong hội chứng suy hô hấp cấp tính nhẹ (ARDS) thí nghiệm có phổi (p) và ngoài phổi (exp). Trong nghiên cứu thực nghiệm ngẫu nhiên có kiểm soát này, 56 con chuột đực Wistar đã được phân bổ ngẫu nhiên để gây ARDS nhẹ bằng cách tiêm khí quản (n = 28, ARDSp) hoặc tiêm phúc mạc (n = 28, ARDSexp) lipopolysaccharide từ E. coli. Bốn con vật không bị tổn thương phổi được dùng làm nhóm đối chứng (NI). Sau 24 giờ, các con vật được gây mê, thở máy ở chế độ kiểm soát áp lực với thể tích khí lưu thấp (6 mL/kg), và được phân bổ ngẫu nhiên để nhận salbutamol (SALB) hoặc dung dịch muối sinh lý 0.9% (CTRL), tiêm tĩnh mạch (i.v., 10 μg/kg/h) hoặc tiêm khí quản (bolus, 25 μg). Liều salbutamol được điều chỉnh để tăng khoảng 20% nhịp tim. Các chỉ số huyết động, cơ học phổi và khí máu động mạch được đo trước và sau (tại 30 và 60 phút) khi tiêm salbutamol. Vào cuối thí nghiệm, phổi được lấy ra để phân tích mô học và phân tích sinh học phân tử. Các giá trị được biểu thị dưới dạng trung bình ± độ lệch chuẩn, và thay đổi gấp đôi so với NI, CTRL so với SALB. Biểu hiện gen của các kênh ion và aquaporin đã tăng lên trong ARDSp nhẹ, nhưng không phải trong ARDSexp. Trong ARDSp, salbutamol tiêm tĩnh mạch dẫn đến biểu hiện gen cao hơn của kênh natri biểu mô phổi (0.20 ± 0.07 so với 0.68 ± 0.24, p < 0.001), aquaporin-1 (0.44 ± 0.09 so với 0.96 ± 0.12, p < 0.001), aquaporin-3 (0.31 ± 0.12 so với 0.93 ± 0.20, p < 0.001), và Na-K-ATPase-α (0.39 ± 0.08 so với 0.92 ± 0.12, p < 0.001), trong khi salbutamol tiêm khí quản tăng biểu hiện gen của aquaporin-1 (0.46 ± 0.11 so với 0.92 ± 0.06, p < 0.001) và Na-K-ATPase-α (0.32 ± 0.07 so với 0.58 ± 0.15, p < 0.001). Trong ARDSexp, biểu hiện gen của các kênh ion và aquaporin không bị ảnh hưởng bởi salbutamol. Các biến số hình thái và chức năng cũng như sự hình thành phù nề không bị ảnh hưởng bởi salbutamol ở bất kỳ nhóm ARDS nào, không phụ thuộc vào đường sử dụng. Việc tiêm salbutamol tăng cường biểu hiện của các kênh ion biểu mô phổi và aquaporin trong ARDSp nhẹ, nhưng không trong ARDSexp, và không có tác động nào đến hình thái và chức năng phổi hoặc sự hình thành phù nề. Những kết quả này có thể góp phần giải thích những tác động tiêu cực của các tác nhân kích thích β2 lên kết quả lâm sàng trong ARDS.
Từ khóa
#salbutamol #hội chứng suy hô hấp cấp tính #kênh ion #aquaporin #viêm #phù nề phổiTài liệu tham khảo
Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med. 2000, 342 (18): 1334-1349. 10.1056/NEJM200005043421806.
Ware LB, Matthay MA: Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001, 163 (6): 1376-1383. 10.1164/ajrccm.163.6.2004035.
Matthay MA, Wiener-Kronish JP: Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis. 1990, 142 (6 Pt 1): 1250-1257.
Hollenhorst MI, Richter K, Fronius M: Ion transport by pulmonary epithelia. J Biomed Biotechnol. 2011, 2011: 174306-
Herrero R, Tanino M, Smith LS, Kajikawa O, Wong VA, Mongovin S, Matute-Bello G, Martin TR: The Fas/FasL pathway impairs alveolar fluid clearance in mouse lungs. Am J Physiol Lung Cell Mol Physiol. 2013, 305 (5): L377-L388. 10.1152/ajplung.00271.2012.
Basran GS, Hardy JG, Woo SP, Ramasubramanian R, Byrne AJ: Beta-2-adrenoceptor agonists as inhibitors of lung vascular permeability to radiolabelled transferrin in the adult respiratory distress syndrome in man. Eur J Nucl Med. 1986, 12 (8): 381-384.
Sakuma T, Suzuki S, Usuda K, Handa M, Okaniwa G, Nakada T, Fujimura S, Matthay MA: Preservation of alveolar epithelial fluid transport mechanisms in rewarmed human lung after severe hypothermia. J Appl Physiol. 1996, 80 (5): 1681-1686.
Sakuma T, Folkesson HG, Suzuki S, Okaniwa G, Fujimura S, Matthay MA: Beta-adrenergic agonist stimulated alveolar fluid clearance in ex vivo human and rat lungs. Am J Respir Crit Care Med. 1997, 155 (2): 506-512. 10.1164/ajrccm.155.2.9032186.
Perkins GD, McAuley DF, Richter A, Thickett DR, Gao F: Bench-to-bedside review: beta2-Agonists and the acute respiratory distress syndrome. Crit Care. 2004, 8 (1): 25-32. 10.1186/cc2417.
Maris NA, de Vos AF, Dessing MC, Spek CA, Lutter R, Jansen HM, van der Zee JS, Bresser P, van der Poll T: Antiinflammatory effects of salmeterol after inhalation of lipopolysaccharide by healthy volunteers. Am J Respir Crit Care Med. 2005, 172 (7): 878-884. 10.1164/rccm.200503-451OC.
Bosmann M, Grailer JJ, Zhu K, Matthay MA, Sarma JV, Zetoune FS, Ward PA: Anti-inflammatory effects of beta2 adrenergic receptor agonists in experimental acute lung injury. FASEB J. 2012, 26 (5): 2137-2144. 10.1096/fj.11-201640.
McAuley DF, Frank JA, Fang X, Matthay MA: Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit Care Med. 2004, 32 (7): 1470-1476. 10.1097/01.CCM.0000129489.34416.0E.
Frank JA, Wang Y, Osorio O, Matthay MA: Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats. J Appl Physiol. 2000, 89 (4): 1255-1265.
Perkins GD, McAuley DF, Thickett DR, Gao F: The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006, 173 (3): 281-287. 10.1164/rccm.200508-1302OC.
Gao Smith F, Perkins GD, Gates S, Young D, McAuley DF, Tunnicliffe W, Khan Z, Lamb SE: BALTI-2 study investigators: Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet. 2012, 379 (9812): 229-235. 10.1016/S0140-6736(11)61623-1.
Heart N, Matthay MA, Brower RG, Carson S, Douglas IS, Eisner M, Hite D, Holets S, Kallet RH, Liu KD, MacIntyre N, Moss M, Schoenfeld D, Steingrub J, Thompson BT, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network: Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011, 184 (5): 561-568.
Menezes SL, Bozza PT, Neto HC, Laranjeira AP, Negri EM, Capelozzi VL, Zin WA, Rocco PR: Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl Physiol. 2005, 98 (5): 1777-1783. 10.1152/japplphysiol.01182.2004.
Riva DR, Oliveira MB, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PR: Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit Care Med. 2008, 36 (6): 1900-1908. 10.1097/CCM.0b013e3181760e5d.
Santos FB, Nagato LK, Boechem NM, Negri EM, Guimaraes A, Capelozzi VL, Faffe DS, Zin WA, Rocco PR: Time course of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury. J Appl Physiol. 2006, 100 (1): 98-106. 10.1152/japplphysiol.00395.2005.
Peterson BT, Brooks JA, Zack AG: Use of microwave oven for determination of postmortem water volume of lungs. J Appl Physiol. 1982, 52 (6): 1661-1663.
Spieth PM, Carvalho AR, Guldner A, Kasper M, Schubert R, Carvalho NC, Beda A, Dassow C, Uhlig S, Koch T, Pelosi P: Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med. 2011, 39 (4): 746-755. 10.1097/CCM.0b013e318206bda6.
Martin TR, Matute-Bello G: Experimental models and emerging hypotheses for acute lung injury. Crit Care Clin. 2011, 27 (3): 735-752. 10.1016/j.ccc.2011.05.013.
Bennett JA, Smyth ET, Pavord ID, Wilding PJ, Tattersfield AE: Systemic effects of salbutamol and salmeterol in patients with asthma. Thorax. 1994, 49 (8): 771-774. 10.1136/thx.49.8.771.
Marunaka Y, Niisato N, O’Brodovich H, Eaton DC: Regulation of an amiloride-sensitive Na+−permeable channel by a beta2-adrenergic agonist, cytosolic Ca2+ and Cl- in fetal rat alveolar epithelium. J Physiol. 1999, 515 (Pt 3): 669-683.
Chen XJ, Eaton DC, Jain L: Beta-adrenergic regulation of amiloride-sensitive lung sodium channels. Am J Physiol Lung Cell Mol Physiol. 2002, 282 (4): L609-L620.
Pesce L, Comellas A, Sznajder JI: Beta-adrenergic agonists regulate Na-K-ATPase via p70S6k. Am J Physiol Lung Cell Mol Physiol. 2003, 285 (4): L802-L807.
Rocco PR, Dos Santos C, Pelosi P: Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiol. 2009, 75 (12): 730-740.
Daaka Y, Luttrell LM, Lefkowitz RJ: Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997, 390 (6655): 88-91. 10.1038/36362.
Mutlu GM, Factor P: Alveolar epithelial beta2-adrenergic receptors. Am J Respir Cell Mol Biol. 2008, 38 (2): 127-134. 10.1165/rcmb.2007-0198TR.
He X, Hu JL, Li J, Zhao L, Zhang Y, Zeng YJ, Dai SS, He FT: A feedback loop in PPARgamma-adenosine A2A receptor signaling inhibits inflammation and attenuates lung damages in a mouse model of LPS-induced acute lung injury. Cell Signal. 2013, 25 (9): 1913-1923. 10.1016/j.cellsig.2013.05.024.
Brant KA, Fabisiak JP: Role of hypoxia-inducible factor 1, alpha subunit and cAMP-response element binding protein 1 in synergistic release of interleukin 8 by prostaglandin E2 and nickel in lung fibroblasts. Am J Respir Cell Mol Biol. 2013, 49 (1): 105-113. 10.1165/rcmb.2012-0297OC.
Bassford CR, Thickett DR, Perkins GD: The rise and fall of beta-agonists in the treatment of ARDS. Crit Care. 2012, 16 (2): 208-10.1186/cc11221.
Dincer HE, Gangopadhyay N, Wang R, Uhal BD: Norepinephrine induces alveolar epithelial apoptosis mediated by alpha-, beta-, and angiotensin receptor activation. Am J Physiol Lung Cell Mol Physiol. 2001, 281 (3): L624-L630.
Minnear FL, DeMichele MA, Moon DG, Rieder CL, Fenton JW: Isoproterenol reduces thrombin-induced pulmonary endothelial permeability in vitro. Am J Physiol. 1989, 257 (5 Pt 2): H1613-H1623.
Perkins GD, Gao F, Thickett DR: In vivo and in vitro effects of salbutamol on alveolar epithelial repair in acute lung injury. Thorax. 2008, 63 (3): 215-220. 10.1136/thx.2007.080382.
Downs CA, Kriener LH, Yu L, Eaton DC, Jain L, Helms MN: beta-Adrenergic agonists differentially regulate highly selective and nonselective epithelial sodium channels to promote alveolar fluid clearance in vivo. Am J Physiol Lung Cell Mol Physiol. 2012, 302 (11): L1167-L1178. 10.1152/ajplung.00038.2012.
Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM: Beta2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal. 2007, 19 (2): 251-260. 10.1016/j.cellsig.2006.06.007.
Pesenti A, Pelosi P, Rossi N, Aprigliano M, Brazzi L, Fumagalli R: Respiratory mechanics and bronchodilator responsiveness in patients with the adult respiratory distress syndrome. Crit Care Med. 1993, 21 (1): 78-83. 10.1097/00003246-199301000-00016.
Morina P, Herrera M, Venegas J, Mora D, Rodriguez M, Pino E: Effects of nebulized salbutamol on respiratory mechanics in adult respiratory distress syndrome. Intensive Care Med. 1997, 23 (1): 58-64. 10.1007/s001340050291.
Curley G, Hayes M, Laffey JG: Can ‘permissive’ hypercapnia modulate the severity of sepsis-induced ALI/ARDS?. Crit Care. 2011, 15 (2): 212-10.1186/cc9994.