The effect of uni-axial orientation on macroporous membrane structure

Springer Science and Business Media LLC - Tập 13 Số 1 - Trang 61-72 - 2006
Morehouse, Jason A.1, Worrel, Leah S.1, Taylor, Dana L.1, Lloyd, Douglas R.1,2, Freeman, Benny D.1, Lawler, Desmond F.3
1Department of Chemical Engineering, Center for Nano and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin, Austin
2Department of Chemical Engineering, The University of Texas at Austin, Austin
3Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin

Tóm tắt

The effect of uni-axial stretching on the material properties of macroporous poly(vinylidene fluoride) (PVDF) membranes was experimentally determined. Atomic force microscopy (AFM), differential scanning calorimetry, scanning electron microscopy, and digital image analysis were used to characterize physical structure of the membrane before and after stretching. The effects of strain rate, temperature, and total strain on pore aspect ratio, pore area, surface roughness, glass transition temperature, porosity, and membrane thickness were all examined in this study. Membrane stretching was found to dramatically change the pore structure of PVDF membranes, but was found to have little effect on polymeric properties such as glass transition temperature. Current popular AFM characterization techniques were unable to capture the physical changes in the surface morphology.

Tài liệu tham khảo

W.S.W. Ho and K.K. Sirkar, Membrane Handbook (1992).

citation_journal_title=Vom Vasser; citation_author=H.C. Flemming, G. Schaule, R. McDonough; citation_volume=80; citation_publication_date=1993; citation_pages=177; citation_id=CR2

citation_journal_title=Colloids and Surfaces; citation_author=G.L. Leslie, R.P. Schneider, A.G. Fane, K.C. Marshall, C.J.D. Fell; citation_volume=A 73; citation_publication_date=1993; citation_pages=165; citation_id=CR4

citation_title=Water Treatment Membrane Processes; citation_publication_date=1996; citation_id=CR5; citation_author=M.R. Wiesner; citation_author=P. Aptel; citation_publisher=McGraw-Hill

citation_journal_title=Desalination; citation_author=H.C. Flemming, G. Schaule; citation_volume=70; citation_publication_date=1988; citation_pages=95; citation_id=CR6

citation_title=Biofouling and Biocorrosion in Industrial Water Systems; citation_publication_date=1991; citation_id=CR7; citation_author=H.F. Ridgeway; citation_author=J. Safarik; citation_publisher=Springer

H.F. Ridgeway and H.C. Flemming, Water Treatment Membrane Processes. (McGraw-Hill, New York, 1996), p. 6.1.

citation_journal_title=Journal of Membrane Science; citation_author=S.K. Hong, M. Elimelech; citation_volume=132; citation_publication_date=1997; citation_pages=159; citation_doi=10.1016/S0376-7388(97)00060-4; citation_id=CR9

citation_journal_title=Journal of Membrane Science; citation_author=T. Knoell, J. Safarik, T. Cormack, R. Riley, S.W. Lin, H. Ridgeway; citation_volume=157; citation_publication_date=1999; citation_pages=117; citation_doi=10.1016/S0376-7388(98)00365-2; citation_id=CR10

J.A. Morehouse, L.S. Worrell, B.D. McCloskey, D.R. Lloyd, D.F. Lawler, and B.D. Freeman in Impact of Membrane Stretching on MF Performance, (15th Annual Meeting of the North American Membrane Society, Honolulu HI, 2004).

citation_journal_title=Journal of Polymer Science; Part A; citation_author=C.A.J. Hoeve, M.K. O'Brien; citation_volume=1; citation_publication_date=1963; citation_pages=1947; citation_id=CR12

citation_journal_title=Industrial Engineering Product Research Development; citation_author=H.S. Bierenbaum, R.B. Isaacson, M.L. Druin, S.G. Plovan; citation_volume=13; citation_publication_date=1974; citation_pages=2; citation_id=CR13

citation_journal_title=Journal of Membrane Science; citation_author=T. Sarada, L.C. Sawyer; citation_volume=15; citation_publication_date=1983; citation_pages=97; citation_doi=10.1016/S0376-7388(00)81364-2; citation_id=CR14

G.H. Shipman, US Patent 4,539,256, 3M. (1985).

K.E. Kinzer, US Patent 5,238,619, 3M. (1993).

K.E. Kinzer, US Patent 4,867,881, 3M. (1989).

J.S. Mrozinski, US Patent 4,726,989, 3M. (1988).

J.S. Mrozinski, US Patent 4,863,792, 3M. (1989).

J.S. Mrozinski, US Patent 5,238,623, (1993).

P.W. Clinnton, US Patent 5,962,544, 3M. (1997).

K. Takita, K. Kono, T. Takashima, and K. Okamoto, Japan Patent 364,334, Tonen Corporation. (1991).

K. Takita, K. Kono, T. Takashima, and K. Okamoto, US Patent 5,051,183, Tonen Corporation. (1991).

Nano Scope Operations Manual (Veeco Instruments Inc., Woodbury, 2002), p. 98.

N.G. McCrum, C.P. Buckley, and C.B. Bucknall (Oxford University Press, Oxford, 1997), p. 447.