The effect of sandblasting and acid etching on survival rate of orthodontic miniscrews: a split-mouth randomized controlled trial

Progress in Orthodontics - Tập 22 - Trang 1-7 - 2021
Saeid Foroughi Moghaddam1, Amir Mohammadi1, Ahmad Behroozian1
1Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

Tóm tắt

The aim of this study was to investigate the effect of surface roughening and acid etching on clinical success rate and removal and insertion torque of orthodontic miniscrews. Sixty-two orthodontic miniscrews (Jail Medical Corporation, Seoul, Korea) with the same design and dimensions (10-mm length, 2-mm diameter) are divided into two (sandblasted and acid-etched versus control) groups. The sample of the study was 31 patients whose miniscrews were needed for en masse retraction of the upper six anterior teeth. In this split-mouth study, the miniscrews were placed in the attached gingiva between the second premolar and the first molar. The side (left or right) was selected randomly. The miniscrews were loaded 6 weeks after insertion, and the patients were followed up after 3, 6, 10, 14, and 18 weeks and then for 4 weeks interval. Chi-square, correlation, and independent t tests were done using SPSS ver24 to interpret the data. The survival rate was 90.3% and 83.9% for the sandblasted and acid-etched versus the control group, respectively. The difference in survival rate was not statistically significant (p > 0.05). Removal torque was higher for the sandblasted group (p < 0.05). Younger patients showed less survival rate (p < 0.05) in both groups. Insertion side, namely, left or right, was not statistically significant. Although sandblasting increased removal torque, it did not influence the survival rate of orthodontic miniscrews significantly.

Tài liệu tham khảo

Skeggs RM, Benson PE, Dyer F. Reinforcement of anchorage during orthodontic brace treatment with implants or other surgical methods. Cochrane Database Syst Rev. 2007;3:CD005098. Upadhyay M, Yadav S, Patil S. Mini-implant anchorage for en-masse retraction of maxillary anterior teeth: a clinical cephalometric study. Am J Orthod Dentofacial Orthop. 2008;134:803–10. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T,Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop .2003; 124:373–378. Lee SJ, Ahn SJ, Lee JW, Kim SH, Kim TW. Survival analysis of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2010;137:194–9. Reynders R, Ronchi L, Bipat S. Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofacial Orthop. 2009;135:564.e1–19. Vannet VB, Sabzevar MM, Wehrbein H, Asscherickx K. Osseointegration of miniscrews: a histomorphometric evaluation. Eur J Orthod. 2007;29:437–42. Ohmae M, Saito S, Morohashi T, Seki K, Qu H, et al. A clinical and histological evaluation of titainium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop. 2001;119:489–97. Calvo-Guirado JL, Ortiz-Ruiz AJ, Negri B, López-Marí L, Rodriguez-Barba C, Schlottig F, Calvo-Guirado JL, et al. Histological and histomorphometric evaluation of immediate implant placement on a dog model with a new implant surface treatment. Clin Oral Implants Res. 2010;21:308–15. Yadav S, Upadhyay M, Roberts WE. Biomechanical and histomorphometric properties of four different mini-implant surfaces. Eur J Orthod. 2015;37:627–35. Park H, Choi S, Choi Y, Park Y, Kim K, Yu H. A prospective, split-mouth, clinical study of orthodontic titanium miniscrews with machined and acid-etched surfaces. Angle Orthod. 2019;89(3):411–7. Moon CH, Lee DG, Lee HS, Im JS, Baek HS. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod. 2008;78:101–8. Beltrami R, Sfondrini F, Confalonieri L, Carbone L, Bernardinelli L. Miniscrews and mini-implants success rates in orthodontic treatments: a systematic review and meta-analysis of several clinical parameters. Dentistry. 2015;5:346. Kim TW, Baek SH, Kim JW, Chang Y. Effects of microgrooves on the success rate and soft tissue adaptation of orthodontic miniscrews. Angle Orthod. 2008;78:1057–64. Oltramari-Navarro PVP, Navarro RL, Henriques FJ, Cestari TM, Francischone CE, Taga R, McNamara J. The impact of healing time before loading on orthodontic mini-implant stability: a histomorphometric study in minipigs. Archives Oral Biology. 2013;58:806–a12. Mo SS, Kim SH, Kook YA, Jeong DM, Chung KR, Nelson G. Resistance to immediate orthodontic loading of surface-treated mini implants. Angle Orthod. 2010;80:123–9. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006;130:18–25. Chaddad K, Ferreira AFH, Geurs N, Reddy MS. Influence of surface characteristics on survival rates of mini-implants. Angle Orthod. 2008;78:107–13. Kim HY, Kim SC. Bone cutting capacity and osseointegration of surface-treated orthodontic mini-implants. Korean J Orthod. 2016;46:386–94. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res. 1995;6:24–30. Nasatzky E, Gultchin J, Schwartz Z. The role of surface roughness in promoting osteointegration. Refuat ha-peh eha-shinayim. 2003;20:8–19 98. Brunette DM. In vitro models of biological responses to implants. Adv Dent Res. 1999;13:35–7. Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. J Craniomaxillofac Surg. 2001;29:100–5. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop. 2004;126:42–7. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387–416. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant: a finite element analysis. Clin Oral Implants Res. 2005;16:480–5. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17:109–14. Kim YK, Kim YJ, Yun PY, Kim JW. Effects of the taper shape, dual-thread, and length on the mechanical properties of mini-implants. Angle Orthod. 2009;79:908–14. Aldıkactı M, Acıkgoz G, Turk T, Trisi P. Long-term evaluation of sandblasted and acidetched implants used as orthodontic anchors in dogs. Am J Orthod Dentofacial Orthop. 2004;125:139–47. Motoyoshi M, Matsuoka M, Shimizu N. Application of orthodontic miniimplants in adolescents. Int J Oral Maxillofac Surg. 2007;36:695–9. Han S, Bayome M, Lee J, Lee YJ, Song HH, Kook YA. Evaluation of palatal bone density in adults and adolescents for application of skeletal anchorage devices. Angle Orthod. 2012;82:625–31.