The effect of reduced scan time on response assessment FDG-PET/CT imaging using Deauville score in patients with lymphoma
Tóm tắt
[18F]Fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) is used for response assessment during therapy in Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Clinicians report the scans visually using Deauville criteria. Improved performance in modern PET/CT scanners could allow for a reduction in scan time without compromising diagnostic image quality. Additionally, patient throughput can be increased with increasing cost-effectiveness. We investigated the effects of reducing scan time of response assessment FDG-PET/CT in HL and NHL patients on Deauville score (DS) and image quality. Twenty patients diagnosed with HL/NHL referred to a response assessment FDG-PET/CT were included. PET scans were performed in list-mode with an acquisition time of 120 s per bed position(s/bp). From PET list-mode data images with full acquisition time of 120 s/bp and shorter acquisition times (90, 60, 45, and 30 s/bp) were reconstructed. All images were assessed by two specialists and assigned a DS. We estimated the possible savings when reducing scan time using a simplified model based on assumed values/costs for our hospital. There were no significant changes in the visually assessed DS when reducing scan time to 90 s/bp, 60 s/bp, 45 s/bp, and 30 s/bp. Image quality of 90 s/bp images were rated equal to 120 s/bp images. Coefficient of variance values for 120 s/bp and 90 s/bp images was significantly < 15%. The estimated annual savings to the hospital when reducing scan time was 8000-16,000 €/scanner. Acquisition time can be reduced to 90 s/bp in response assessment FDG-PET/CT without compromising Deauville score or image quality. Reducing acquisition time can reduce costs to the clinic.
Tài liệu tham khảo
Akamatsu G, Mitsumoto K, Taniguchi T, Tsutsui Y, Baba S, Sasaki M (2014) Influences of point-spread function and time-of-flight reconstructions on standardized uptake value of lymph node metastases in FDG-PET. Eur J Radiol 83:226–230
Andersen FL, Klausen TL, Loft A, Beyer T, Holm S (2013) Clinical evaluation of PET image reconstruction using a spatial resolution model. Eur J Radiol 82:862–869
Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller SP et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on malignant lymphomas imaging working group. J Clin Oncol 32:3048–3058
Barrington SF, Qian W, Somer EJ, Franceschetto A, Bagni B, Brun E et al (2010) Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:1824–1833
Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M et al (2013) International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med 54:683–690
Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354
Boellard R, Willemsen AT, Arends B, Visser EP. EARL procedure for assessing PET/CT system specific patient FDG activity preparations for quantitative FDG PET/CT studies. 2013.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424
Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M et al (2019) Ultra–low-dose 18 F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology 290:649–656
Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3067
Conti M, Bendriem B (2019) The new opportunities for high time resolution clinical TOF PET. Clin Transl Imaging. 7:139–147
Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M et al (2007) Early interim 2-[ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol 25:3746–3752
Huang B, Law MW-M, Khong P-L (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251:166–174
Itti E, Meignan M, Berriolo-Riedinger A, Biggi A, Cashen AF, Véra P et al (2013) An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and ΔSUVmax. Eur J Nucl Med Mol Imaging 40:1312–1320
Kuhnert G, Boellaard R, Sterzer S, Kahraman D, Scheffler M, Wolf J et al (2016) Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis. Eur J Nucl Med Mol Imaging 43:249–258
Ly J, Minarik D, Edenbrandt L, Wollmer P, Trägårdh E (2019) The use of a proposed updated EARL harmonization of 18F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations. EJNMMI Res 9
Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C (2009) Report on the first international workshop on interim-PET scan in lymphoma. Leuk Lymphoma. 50:1257–1260
Mikhaeel NG, Hutchings M, Fields PA, O’Doherty MJ, Timothy AR (2005) FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol 16:1514–1523
Munk OL, Tolbod LP, Hansen SB, Bogsrud TV (2017) Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys 4:5
Smith A, Crouch S, Lax S, Li J, Painter D, Howell D et al (2015) Lymphoma incidence, survival and prevalence 2004–2014: sub-type analyses from the UK’s Haematological Malignancy Research Network. Br J Cancer 112:1575–1584
Sonni I, Baratto L, Park S, Hatami N, Srinivas S, Davidzon G et al (2018) Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys 5
van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA et al (2017) Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging 44:4–16
van Sluis J, Boellaard R, Dierckx RA, Stormezand G, Glaudemans AWJM, Noordzij W (2019) Image quality and activity optimization in oncological 18 F-FDG PET using the digital Biograph Vision PET/CT. J Nucl Med jnumed. (7):1031–1036
Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I et al (2010) 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30