The effect of light and ventilation on house entry by Anopheles arabiensis sampled using light traps in Tanzania: an experimental hut study

Malaria Journal - Tập 21 - Trang 1-11 - 2022
Arnold S. Mmbando1,2, John Bradley3, Deogratius Kazimbaya1, Robert Kasubiri1, Jakob Knudsen4, Doreen Siria1, Lorenz von Seidlein5, Fredros O. Okumu1,6,7,8, Steve W. Lindsay2
1Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
2Department of Biosciences, Durham University, Durham, UK
3MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
4Royal Danish Academy - Architecture, Design and Conservation, Copenhagen, Denmark
5Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
6School of Public Health, University of the Witwatersrand, Braamfontein, Republic of South Africa
7Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
8School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania

Tóm tắt

In sub-Saharan Africa, house design and ventilation affects the number of malaria mosquito vectors entering houses. This study hypothesized that indoor light from a CDC-light trap, visible from outside a hut, would increase entry of Anopheles arabiensis, an important malaria vector, and examined whether ventilation modifies this effect. Four inhabited experimental huts, each situated within a large chamber, were used to assess how light and ventilation affect the number of hut-entering mosquitoes in Tanzania. Each night, 300 female laboratory-reared An. arabiensis were released inside each chamber for 72 nights. Nightly mosquito collections were made using light traps placed indoors. Temperature and carbon dioxide concentrations were measured using data loggers. Treatments and sleepers were rotated between huts using a randomized block design. When indoor light was visible outside the huts, there was an 84% increase in the odds of collecting mosquitoes indoors (Odds ratio, OR = 1.84, 95% confidence intervals, 95% CI 1.74–1.95, p < 0.001) compared with when it was not. Although the odds of collecting mosquitoes in huts with closed eaves (OR = 0.54, 95% CI 0.41–0.72, p < 0.001) was less than those with open eaves, few mosquitoes entered either type of well-ventilated hut. The odds of collecting mosquitoes was 99% less in well-ventilated huts, compared with poorly-ventilated traditional huts (OR = 0.01, 95% CI 0.01–0.03, p < 0.001). In well-ventilated huts, indoor temperatures were 1.3 °C (95% CI 0.9–1.7, p < 0.001) cooler, with lower carbon dioxide (CO2) levels (mean difference = 97 ppm, 77.8–116.2, p < 0.001) than in poorly-ventilated huts. Although light visible from outside a hut increased mosquito house entry, good natural ventilation reduces indoor carbon dioxide concentrations, a major mosquito attractant, thereby reducing mosquito-hut entry.

Tài liệu tham khảo

Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, Okumu FO. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania. PLoS ONE. 2017;12: e0177807. Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Nat Acad Sci USA. 2019;116:15086–95. Jatta E, Jawara M, Bradley J, Jeffries D, Kandeh B, Knudsen JB, et al. How house design affects malaria mosquito density, temperature, and relative humidity: an experimental study in rural Gambia. Lancet Planet Health. 2018;2:e498–508. Jatta E, Carrasco-Tenezaca M, Jawara M, Bradley J, Ceesay S, D’Alessandro U, et al. Impact of increased ventilation on indoor temperature and malaria mosquito density: an experimental study in The Gambia. J R Soc Interface. 2021;18:20201030. Carrasco-Tenezaca M, Jawara M, Abdi MY, Bradley J, Brittain OS, Ceesay S, et al. The relationship between house height and mosquito house entry: an experimental study in rural Gambia. J R Soc Interface. 2021;18:20210256. Kaindoa EW, Mkandawile G, Ligamba G, Kelly-Hope LA, Okumu FO. Correlations between household occupancy and malaria vector biting risk in rural Tanzanian villages: implications for high-resolution spatial targeting of control interventions. Malar J. 2016;15:199. Gillies M. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Entomol Res. 1980;70:525–32. Pulford J, Hetzel MW, Bryant M, Siba PM, Mueller I. Reported reasons for not using a mosquito net when one is available: a review of the published literature. Malar J. 2011;10:83. von Seidlein L, Ikonomidis K, Mshamu S, Nkya TE, Mukaka M, Pell C, et al. Affordable house designs to improve health in rural Africa: a field study from northeastern Tanzania. Lancet Planet Health. 2017;1:e188–99. Njie M, Dilger E, Lindsay SW, Kirby MJ. Importance of eaves to house entry by anopheline, but not culicine, mosquitoes. J Med Entomol. 2014;46:505–10. Lindsay S, Snow R. The trouble with eaves; house entry by vectors of malaria. Trans R Soc Trop Med Hyg. 1988;82:645–6. Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar J. 2017;16:85. Ogoma SB, Ngonyani H, Simfukwe ET, Mseka A, Moore J, Killeen GF. Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared Anopheles arabiensis mosquitoes in a semi-field tunnel cage. Parasit Vectors. 2012;5:54. Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, Majambere S. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331. Ferguson HM, Ng’habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, et al. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008;7:158. Mmbando AS, Batista EP, Kilalangongono M, Finda MF, Mwanga EP, Kaindoa EW, et al. Evaluation of a push–pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor-and outdoor-biting malaria vectors. Malar J. 2019;18:87. Mmbando AS, Ngowo H, Limwagu A, Kilalangongono M, Kifungo K, Okumu FO. Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes. Malar J. 2018;17:368. R Core Team. R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. Chaves LF, Chaves LF. An entomologist guide to demystify pseudoreplication: data analysis of field studies with design constraints. J Med Entomol. 2010;47:291–8. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:48. Wickham H, Francois R, Henry L, Müller K. dplyr: A grammar of data manipulation. R package version 0.4. 3. R Found Stat Comput, Vienna. 2015. https://cran.r-project.org/package=dplyr. Accessed 1 Feb 2022. Odetoyinbo J. Preliminary investigation on the use of a light-trap for sampling malaria vectors in The Gambia. Bull World Health Organ. 1969;40:547–60. Costantini C, Sagnon N, Sanogo E, Merzagora L, Coluzzi M. Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res. 1998;88:503–11. Tiono AB, Ouédraogo A, Ouattara D, Bougouma EC, Coulibaly S, Diarra A, et al. Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet. 2018;392:569–80. Massebo F, Lindtjørn B. The effect of screening doors and windows on indoor density of Anopheles arabiensis in south-west Ethiopia: a randomized trial. Malar J. 2013;12:319. Pinder M, Bradley J, Jawara M, Affara M, Conteh L, Correa S, et al. Improved housing versus usual practice for additional protection against clinical malaria in The Gambia (RooPfs): a household-randomised controlled trial. Lancet Planet Health. 2021;5:e220–9. Barghini A, de Medeiros BA. Artificial lighting as a vector attractant and cause of disease diffusion. Environ Health Perspect. 2010;118:1503–6. Pellegrini L, Tasciotti L. The electrification–malaria nexus: the case of rural Uganda. Eur J Develop Res. 2016;28:521–35. Yamamoto S, Louis V, Sie A, Sauerborn R. Household risk factors for clinical malaria in a semi-urban area of Burkina Faso: a case–control study. Trans R Soc Trop Med Hyg. 2010;104:61–5. Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14: e0217414. James SP. Malaria at home and abroad. London: Bale & Danielsson; 1920. Thomson RM. Studies on Anopheles gambiae and A. melas in and around Lagos. Bull Entomol Res. 1948;38:527–58. Marchand R. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Netherl J Zool. 1983;34:367–87. Jones M, Gubbins S. Changes in the circadian flight activity of the mosquito Anopheles gambiae in relation to insemination, feeding and oviposition. Physiol Entomol. 1978;3:213–20. Sheppard AD, Rund SS, George GF, Clark E, Acri DJ, Duffield GE. Light manipulation of mosquito behaviour: acute and sustained photic suppression of biting activity in the Anopheles gambiae malaria mosquito. Parasit Vectors. 2017;10:255. Causey OR, Deane LM, Deane MP. Ecology of Anopheles gambiae in Brazil. Amer J Trop Med. 1943;23:73–94. Browne SM, Bennett GF. Response of mosquitoes (Diptera: Culicidae) to visual stimuli. J Med Entomol. 1981;18:505–21. Gillies MT, Wilkes TJ. Responses of host-seeking Mansonia and Anopheles mosquitoes (Diptera: Culicidae) in West Africa to visual features of a target. J Med Entomol. 1982;19:68–71. Mburu MM, Juurlink M, Spitzen J, Moraga P, Hiscox A, Mzilahowa T, et al. Impact of partially and fully closed eaves on house entry rates by mosquitoes. Parasit Vectors. 2018;11:383. O’Connell AJ. Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla. Chichester: Wiley; 1996. Maia MF, Kreppel K, Mbeyela E, Roman D, Mayagaya V, Lobo NF, et al. A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania. Parasit Vectors. 2016;9:451.