The effect of fractionality nature in differences between computer simulation and experimental results of a chaotic circuit

Central European Journal of Physics - Tập 11 - Trang 836-844 - 2013
Salman Faraji1, Mohammad Saleh Tavazoei2
1Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

Tóm tắt

In practice, some differences are usually observed between computer simulation and experimental results of a chaotic circuit. In this paper, it is tried to obtain computer simulation results having more correlation with those obtained in practice by using more realistic models for chaotic circuits. This goal is achieved by considering the fractionality nature of electrical capacitors in the model of a chaotic circuit.

Tài liệu tham khảo

S. J. Linz, Acta Phys. Pol. B 34, 3741 (2003) S. J. Linz, J. C. Sprott, Phys. Lett. A 259, 240 (1999) C. P. Silva, IEEE T. Circuits-I 40, 675 (1993) I. Podlubny, Fractional Differential Equations, (Academic Press, San Diego, 1999) A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Elsevier, Amsterdam, Netherlands, 2006) S. Westerlund, Phys. Scripta 43, 174 (1991) P. J. Torvik, R. L. Bagley, J. Appl. Mech-T. ASME 51, 294 (1984) R. R. Curtain, in: H. T. Banks (Ed.), Control and Estimation in Distributed Parameter Systems, (SIAM, Philadelphia, 1992) 171 J. D. Gabano, T. Poinot, Signal Process. 91, 531 (2011) R. L. Bagley, R. A. Calico, J. Guid. Control Dynam. 14, 304 (1991) S. Y. Kim, D. H. Lee, J. Sound Vib. 324, 570 (2009) N. Laskin, Physica A 287, 482 (2000) H. G. Sun, W. Chen, Y. Q. Chen, Physica A 388, 4586 (2009) R. L. Magin, Comput. Math Appl. 59, 1586 (2010) M. J. Hasler, Proceeding of the IEEE 75, 1009 (1987) J. C. Sprott, Phys. Lett. A 266, 19 (2000) G. Q. Zhong, K. F. Man, G. Chen, Int. J. Bifurcat. Chaos 11, 865 (2001) G. Q. Zhong, K. F. Man, G. Chen, Int. J. Bifurcat. Chaos 12, 2907 (2002) W. S. Tang, G. Q. Zhong, Int. J. Bifurcat. Chaos 13, 3099 (2003) S. Westerlund, IEEE T. Dielect. El. In. 1, 826 (1994) M. J. Curie, Annales de chimie et de physique 6, 203 (1889) (in French) K. Diethelm, N. J. Ford, A. D. Freed, Nonlinear Dynam. 29, 3 (2002) M. S. Tavazoei, M. Haeri, IET Signal Process. 1, 171 (2007) A. K. Golmankhaneh, A. M. Yengejeh, D. Baleanu, Int. J. Theor. Phys. 51, 2909 (2012) D. Baleanu and et al, Fractional Calculus Models and Numerical Methods, (World Scientific,2012) J. Zhu, J. Lu, X. Yu, IEEE T Circuits-I 60, 199 (2013) J. Lu, G. Chen, IEEE T Automat. Contr. 50, 841 (2005) J. Lu, S. Yu, H. Leung, G. Chen, IEEE T. Circuits-I 53, 149 (2006) J. Lu, F. Han, X. Yu, G. Chen, Automatica 40, 1677 (2004) Y. Chen, J. Lu, X. Yu, Science China: Technolog. Sci. 54, 2014 (2011) M. S. Tavazoei, M. Haeri, Phys. Lett. A 367, 102 (2007) D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional Dynamics and Control (Springer, 2012) B. Y. Datsko, V. V. Gafiychuk, Signal Process. 91, 452 (2011) M. S. Tavazoei, M. Haeri, Physica D 237, 2628 (2008) T. T. Hartley, C. F. Lorenzo, H. K. Qammer, IEEE T. Circuits-I 42, 485 (1995) W. Deng, C. Li, Phys. Lett. A 372, 401 (2008)