The effect of compression stresses, stress level and stress order on fatigue crack growth of multiple site damage

Fatigue and Fracture of Engineering Materials and Structures - Tập 35 Số 10 - Trang 903-917 - 2012
J.‐H. KIM1, Thanh Chau-Dinh2, Goangseup Zi1, Kong Jungsik1
1School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, Korea
2Faculty of Civil Engineering and Applied Mechanics, HCMC University of Technical Education, HoChiMinh City, Vietnam

Tóm tắt

ABSTRACT

Structural components are generally subjected to a wide stress spectrum over their lifetime. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. When there is a critical level of multiple site damage at connections, cracks link up to form a large crack which abruptly reduces the residual strength of the damaged structural member. Therefore, it is important to estimate the fatigue life before the cracks link up due to critical multiple site damage. In this study, the extended finite element method was applied to predict lifetime under constant amplitude cyclic loadings of fatigue tests on several multiple site damage specimens made of Al 2024‐T3. Then the multiple crack growths under service stress spectra are calculated to investigate the effects of compressive stress, stress orders and the effect of sequence cyclic loadings on stress levels by using Forman and NASGROW equations.

Từ khóa


Tài liệu tham khảo

10.1016/j.ijfatigue.2007.12.001

Murthy A. R. C., 2004, State‐of‐the‐art review on fatigue crack growth analysis under variable amplitude loading, J. Inst. Eng. (India) Civil. Eng. Div., 85, 118

Abdullah S., 2009, Fatigue crack growth modelling of aluminium alloy under constant and variable amplitude loadings, Struct. Durability Health Monit., 5, 109

Yu M. Topper T. H.andAu P.(1984)The effect of stress ratio compressive load and underload on the threshold behaviour of a 2024‐T351 aluminium alloy. In:Proceedings of the Fatigue 84 Second International Conference on Fatigue and Fatigue Threshold Birmingham UK 179–190.

Tack A.andBeevers C. J.(1990)The influence of compressive loading on fatigue crack propagation in three aerospace bearing steels. In:Proceedings of the Fourth International Conference on Fatigue and Fatigue Threshold UK MPCE Ltd Honolulu 1179–1184.

10.1016/S0142-1123(97)00010-8

10.1111/j.1460-2695.1997.tb00405.x

10.1016/S0142-1123(03)00137-3

10.1016/S0142-1123(03)00162-2

10.1016/j.ijfatigue.2005.07.003

10.1016/S0142-1123(03)00150-6

10.1016/0013-7944(70)90028-7

Elber W., 1971, The significance of fatigue crack closure, ASTM STP, 486, 230

10.1111/j.1460-2695.1990.tb00601.x

10.1016/0142-1123(93)90175-P

10.1111/j.1460-2695.1996.tb00958.x

10.1046/j.1460-2695.2001.00383.x

10.1016/S0013-7944(02)00119-4

10.1016/0142-1123(90)90456-O

Iwasaki T., 1982, Fatigue crack growth under random loading, Naval. Arch. Ocean. Eng.(Jpn)., 20, 194

Ohrloff N., 1988, Fatigue Crack Propagation Behaviour Under Variable Amplitude Loading

10.1111/j.1460-2695.1987.tb00210.x

10.1016/0001-6160(85)90244-5

Schijve J., 1988, Fatigue crack closure observations and technical significance, ASTM STP, 982, 5

10.1046/j.1460-2695.2003.00660.x

AFGROW, 2003, AFGROW Reference Manual (version 4.0)

NASGRO, 2002, NASGRO Reference Manual (version 4.02)

Newman J. J., 1981, A crack closure model for predicting fatigue crack growth under aircraft spectrum loading, ASTM STP, 748, 53

Newman J. J., 1992, FASTRAN II—A Fatigue Crack Growth Structural Analysis Program

de Koning A. U., 1988, Analysis of crack opening behavior by application of a discretized strip yield model, ASTM STP, 982, 437

10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

10.1016/S0045-7825(01)00260-2

10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L

10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A

10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

10.1002/nme.849

10.1002/nme.941

10.1016/j.ijfatigue.2006.11.003

10.1088/0965-0393/12/5/009

10.1002/nme.1620370205

Joseph W. C., 2006, Fatigue Crack Growth equation

10.1115/1.3656900

Walker E. K., 1970, The Effect of Stress Ration During Crack Propagation and Fatigue for 2024‐T3 and 7076‐T6 Aluminium

10.1016/0013-7944(72)90048-3

Willenborg J. Engle R. M.andWood H. A.(1971)A crack growth retardation model using an effective stress concept.Air force flight dynamics lab Wright‐Patterson AFB OH.

Kassim SA‐R, 2008, Statical modeling of fatigue crack growth rate in ore‐strained 7475‐T7351 aluminium alloy, Mater. Sci. Eng., 486, 585, 10.1016/j.msea.2007.10.083

nCode(2003)User Guide Manual. ICE‐FLOW Cracks Growth V2.0.

Newman J. C., 1984, A crack opening stress equation for fatigue crack growth, Int. J. Fract., 24, R131, 10.1007/BF00020751

Abdullah S., 2011, Effects of load sequence on fatigue crack growth in pressure vessels, AMR., 160, 1217

Beretta S.andVilla A. A. R. V.(2010)approach for the analysis of fatigue crack growth with NASGRO equation. In:Proceedings of the ASRANet2010 Conference Edinburgh Scotland .

10.1016/j.ijfatigue.2009.12.010

10.1016/j.matdes.2010.01.039

10.4028/www.scientific.net/KEM.462-463.489

10.1111/j.1460-2695.2004.00855.x

10.1016/S0013-7944(96)00071-9

10.1016/j.ijfatigue.2009.03.014

10.1007/BF00038891

Forsyth P. J. E., 1961, Proceedings of the Crack Propagation Symposium, 76

10.1115/1.3656897

Thanh C. D., 2011, Predictions of fatigue crack growth and residual strength in plane and shell structures using numerical methods without remeshing

10.1115/1.801535

Marco A. M.andJaime T. P. de C.(2001)Propagation of 2D fatigue cracks under complex loading. In:Proceedings of the 56o Congresso Anual da ABM – 16 a 19 de julho de Belo Horizonte MG .

10.1017/CBO9780511806575

Broek D., 1988, The Practical use of Fracture Mechanics

Meggiolaro M.andCastro J. T. P.(2001)Comparison of load interaction models in fatigue crack propagation. In:Proceedings of the XVI Brazilian Congress in Mechanical Engineering (COBEM) ABCM Uberlândia Minas Gerais Brazil 247–256.

MIL‐STD‐1530A(1975) Aircraft Structural Integrity Program Airplane Requirements.

10.1016/j.ijfatigue.2006.12.007

Nelson D. V., 1977, Predictions of Cumulative Fatigue Damage using Condensed Load Histories

Adam N., 2003, Rain flow counting method

10.1016/0013-7944(73)90022-2

10.1016/j.tws.2004.11.001