The effect of ageing on human lymphocyte subsets: comparison of males and females

Immunity & Ageing - Tập 7 - Trang 1-10 - 2010
Jun Yan1, Judith M Greer1, Renee Hull2, John D O'Sullivan1,2, Robert D Henderson1,2, Stephen J Read2, Pamela A McCombe1,3,2
1The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospital, Australia
2Department of Neurology, Royal Brisbane and Women's Hospital, Australia
3Wesley Research Institute, Wesley Hospital, Australia

Tóm tắt

There is reported to be a decline in immune function and an alteration in the frequency of circulating lymphocytes with advancing age. There are also differences in ageing and lifespan between males and females. We performed this study to see if there were differences between males and females in the frequency of the different lymphocyte subsets with age. Using flow cytometry we have examined different populations of peripheral blood leukocytes purified from healthy subjects with age ranging from the third to the tenth decade. We used linear regression analysis to determine if there is a linear relationship between age and cell frequencies. For the whole group, we find that with age there is a significant decline in the percentage of naïve T cells and CD8+ T cells, and an increase in the percentage of effector memory cells, CD4+foxp3+ T cells and NK cells. For all cells where there was an effect of ageing, the slope of the curve was greater for men than for women and this was statistically significant for CD8+αβ+ T cells and CD3+CD45RA-CCR7- effector memory cells. There was also a difference for naïve cells but this was not significant. The cause of the change in percentage of lymphocyte subsets with age, and the different effects on males and females is not fully understood but warrants further study.

Tài liệu tham khảo

Pan WR, Suami H, Taylor GI: Senile changes in human lymph nodes. Lymphat Res Biol. 2008, 6: 77-83. 10.1089/lrb.2007.1023. Miller RA: Aging and immune function. Int Rev Cytol. 1991, 124: 187-215. full_text. Linton PJ, Dorshkind K: Age-related changes in lymphocyte development and function. Nat Immunol. 2004, 5: 133-139. 10.1038/ni1033. Gruver AL, Hudson LL, Sempowski GD: Immunosenescence of ageing. J Pathol. 2007, 211: 144-156. 10.1002/path.2104. Pawelec G, Solana R: Immunosenescence. Immunol Today. 1997, 18: 514-516. 10.1016/S0167-5699(97)01145-6. Dorshkind K, Swain S: Age-associated declines in immune system development and function: causes, consequences, and reversal. Curr Opin Immunol. 2009, 21: 404-407. 10.1016/j.coi.2009.07.001. Stern S, Behar S, Gottlieb S: Cardiology patient pages. Aging and diseases of the heart. Circulation. 2003, 108: e99-101. 10.1161/01.CIR.0000086898.96021.B9. McEniery CM, Yasmin , McDonnell B, Munnery M, Wallace SM, Rowe CV, Cockcroft JR, Wilkinson IB: Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008, 51: 1476-1482. 10.1161/HYPERTENSIONAHA.107.105445. Grubeck-Loebenstein B, Della BS, Iorio AM, Michel JP, Pawelec G, Solana R: Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res. 2009, 21: 201-209. McElhaney JE, Effros RB: Immunosenescence: what does it mean to health outcomes in older adults?. Curr Opin Immunol. 2009, 21: 418-424. 10.1016/j.coi.2009.05.023. Tower J, Arbeitman M: The genetics of gender and life span. J Biol. 2009, 8: 38- McCombe PA, Greer JM, Mackay IR: Sexual dimorphism in autoimmune disease. Current Molecular Medicine. 2009, Nunn CL, Lindenfors P, Pursall ER, Rolff J: On sexual dimorphism in immune function. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 61-69. 10.1098/rstb.2008.0148. Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, O'sullivan JD, Pandian JD, Read SJ, McCombe PA: Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol. 2009, 206: 112-117. 10.1016/j.jneuroim.2008.11.001. Miller RA: Effect of aging on T lymphocyte activation. Vaccine. 2000, 18: 1654-1660. 10.1016/S0264-410X(99)00502-2. Douziech N, Seres I, Larbi A, Szikszay E, Roy PM, Arcand M, Dupuis G, Fulop T: Modulation of human lymphocyte proliferative response with aging. Exp Gerontol. 2002, 37: 369-387. 10.1016/S0531-5565(01)00204-2. Jiang J, Gross D, Elbaum P, Murasko DM: Aging affects initiation and continuation of T cell proliferation. Mech Ageing Dev. 2007, 128: 332-339. 10.1016/j.mad.2007.02.002. De la Fuente M, Baeza I, Guayerbas N, Puerto M, Castillo C, Salazar V, Ariznavarreta C, Tresguerres JA: Changes with ageing in several leukocyte functions of male and female rats. Biogerontology. 2004, 5: 389-400. 10.1007/s10522-004-3201-8. Hong MS, Dan JM, Choi JY, Kang I: Age-associated changes in the frequency of naive, memory and effector CD8+ T cells. Mech Ageing Dev. 2004, 125: 615-618. 10.1016/j.mad.2004.07.001. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M: Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006, 127: 274-281. 10.1016/j.mad.2005.11.001. Amadori A, Zamarchi R, De SG, Forza G, Cavatton G, Danieli GA, Clementi M, Chieco-Bianchi L: Genetic control of the CD4/CD8 T-cell ratio in humans. Nat Med. 1995, 1: 1279-1283. 10.1038/nm1295-1279. Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA: Increased number of circulating Leu 11+ (CD 16) large granular lymphocytes and decreased NK activity during human ageing. Clin Exp Immunol. 1987, 68: 340-347. Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA: The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol. 2005, 140: 540-546. 10.1111/j.1365-2249.2005.02798.x. Trzonkowski P, Szmit E, Mysliwska J, Mysliwski A: CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence. Clin Immunol. 2006, 119: 307-316. 10.1016/j.clim.2006.02.002. Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA: Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest. 2007, 36: 607-628. 10.1080/08820130701790368. Simone R, Zicca A, Saverino D: The frequency of regulatory CD3+CD8+. J Leukoc Biol. 2008, 84: 1454-1461. 10.1189/jlb.0907627. Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S: CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol. 2006, 176: 6586-6593. Miller RA: Telomere diminution as a cause of immune failure in old age: an unfashionable demurral. Biochem Soc Trans. 2000, 28: 241-245. Iancu EM, Speiser DE, Rufer N: Assessing ageing of individual T lymphocytes: Mission impossible?. Mech Ageing Dev. 2007 Goronzy JJ, Fujii H, Weyand CM: Telomeres, immune aging and autoimmunity. Exp Gerontol. 2006, 41: 246-251. 10.1016/j.exger.2005.12.002. Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, Forti P, Facchini A: Different rates of telomere shortening and telomerase activity reduction in CD8 T and CD16 NK lymphocytes with ageing. Exp Gerontol. 2003, 38: 653-659. 10.1016/S0531-5565(03)00058-5. Lee WW, Nam KH, Terao K, Yoshikawa Y: Age-related telomere length dynamics in peripheral blood mononuclear cells of healthy cynomolgus monkeys measured by Flow FISH. Immunology. 2002, 105: 458-465. 10.1046/j.1365-2567.2002.01386.x. Neri S, Pawelec G, Facchini A, Ferrari C, Mariani E: Altered expression of mismatch repair proteins associated with acquisition of microsatellite instability in a clonal model of human T lymphocyte aging. Rejuvenation Res. 2008, 11: 565-572. 10.1089/rej.2007.0639. Issa JP: Age-related epigenetic changes and the immune system. Clin Immunol. 2003, 109: 103-108. 10.1016/S1521-6616(03)00203-1. Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafe M: Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol. 1999, 34: 911-921. 10.1016/S0531-5565(99)00068-6. Mazzatti DJ, White A, Forsey RJ, Powell JR, Pawelec G: Gene expression changes in longterm culture of T-cell clones: genomic effects of chronic antigenic stress in aging and immunosenescence. Aging Cell. 2007, 6: 155-163. 10.1111/j.1474-9726.2007.00269.x. Koch S, Larbi A, Ozcelik D, Solana R, Gouttefangeas C, Attig S, Wikby A, Strindhall J, Franceschi C, Pawelec G: Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann N Y Acad Sci. 2007, 1114: 23-35. 10.1196/annals.1396.043. Pita-Lopez ML, Gayoso I, Delarosa O, Casado JG, Alonso C, Munoz-Gomariz E, Tarazona R, Solana R: Effect of ageing on CMV-specific CD8 T cells from CMV seropositive healthy donors. Immun Ageing. 2009, 6: 11-10.1186/1742-4933-6-11. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, Elferink BG, van der ZL, de Vries RR, Huizinga TW, Ottenhoff TH, Toes RE: Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum Immunol. 2005, 66: 13-20. 10.1016/j.humimm.2004.05.016. Wang J, Ioan-Facsinay A, van d V, Huizinga TW, Toes RE: Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007, 37: 129-138. 10.1002/eji.200636435. Vescovini R, Telera A, Fagnoni FF, Biasini C, Medici MC, Valcavi P, di PP, Lucchini G, Zanlari L, Passeri G, Zanni F, Chezzi C, Franceschi C, Sansoni P: Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp Gerontol. 2004, 39: 1233-1243. 10.1016/j.exger.2004.04.004. Vescovini R, Biasini C, Fagnoni FF, Telera AR, Zanlari L, Pedrazzoni M, Bucci L, Monti D, Medici MC, Chezzi C, Franceschi C, Sansoni P: Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol. 2007, 179: 4283-4291. Miller JP, Allman D: The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003, 171: 2326-2330. Kline GH, Hayden TA, Klinman NR: B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol. 1999, 162: 3342-3349. Johnson KM, Owen K, Witte PL: Aging and developmental transitions in the B cell lineage. Int Immunol. 2002, 14: 1313-1323. 10.1093/intimm/dxf092. Cancro MP, Smith SH: Peripheral B cell selection and homeostasis. Immunol Res. 2003, 27: 141-148. 10.1385/IR:27:2-3:141. Szabo P, Shen S, Telford W, Weksler ME: Impaired rearrangement of IgH V to DJ segments in bone marrow Pro-B cells from old mice. Cell Immunol. 2003, 222: 78-87. 10.1016/S0008-8749(03)00084-4. Frasca D, Nguyen D, Riley RL, Blomberg BB: Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol. 2003, 170: 719-726. King AM, Keating P, Prabhu A, Blomberg BB, Riley RL: NK cells in the CD19-B220+ bone marrow fraction are increased in senescence and reduce E2A and surrogate light chain proteins in B cell precursors. Mech Ageing Dev. 2009, 130: 384-392. 10.1016/j.mad.2009.03.002. Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, Franceschi C, Passeri M, Sansoni P: Expansion of cytotoxic CD8+. Immunology. 1996, 88: 501-507. 10.1046/j.1365-2567.1996.d01-689.x. Baecher-Allan C, Wolf E, Hafler DA: Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells. Clin Immunol. 2005, 115: 10-18. 10.1016/j.clim.2005.02.018. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA: CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001, 167: 1245-1253. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003, 4: 330-336. 10.1038/ni904. Wildin RS, Smyk-Pearson S, Filipovich AH: Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002, 39: 537-545. 10.1136/jmg.39.8.537. Tsaknaridis L, Spencer L, Culbertson N, Hicks K, LaTocha D, Chou YK, Whitham RH, Bakke A, Jones RE, Offner H, Bourdette DN, Vandenbark AA: Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J Neurosci Res. 2003, 74: 296-308. 10.1002/jnr.10766. Bouman A, Schipper M, Heineman MJ, Faas MM: Gender difference in the non-specific and specific immune response in humans. Am J Reprod Immunol. 2004, 52: 19-26. 10.1111/j.1600-0897.2004.00177.x. Giltay EJ, Fonk JC, von Blomberg BM, Drexhage HA, Schalkwijk C, Gooren LJ: In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. J Clin Endocrinol Metab. 2000, 85: 1648-1657. 10.1210/jc.85.4.1648. McCombe PA, Greer JM, Mackay IR: Sexual dimorphism in autoimmune disease. Curr Mol Med. 2009, 9: 1058-1079. 10.2174/156652409789839116. Ansar AS, Penhale WJ, Talal N: Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. Am J Pathol. 1985, 121: 531-551. Weinstein Y, Ran S, Segal S: Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol. 1984, 132: 656-661. Terres G, Morrison SL, Habicht GS: A quantitative difference in the immune response between male and female mice. Proc Soc Exp Biol Med. 1968, 127: 664-667. Kongshavn PA, Bliss JQ: Sex differences in survival of H-2 incompatible skin grafts in mice treated with antithymocyte serum. Nature. 1970, 226: 451-10.1038/226451a0. Santoli D, Trinchieri G, Zmijewski CM, Koprowski H: HLA-related control of spontaneous and antibody-dependent cell-mediated cytotoxic activity in humans. J Immunol. 1976, 117: 765-770. Bebo BF, Adlard K, Schuster JC, Unsicker L, Vandenbark AA, Offner H: Gender differences in protection from EAE induced by oral tolerance with a peptide analogue of MBP-Ac1-11. J Neurosci Res. 1999, 55: 432-440. 10.1002/(SICI)1097-4547(19990215)55:4<432::AID-JNR4>3.0.CO;2-2. Lotter H, Jacobs T, Gaworski I, Tannich E: Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect Immun. 2006, 74: 118-124. 10.1128/IAI.74.1.118-124.2006. Mock BA, Nacy CA: Hormonal modulation of sex differences in resistance to Leishmania major systemic infections. Infect Immun. 1988, 56: 3316-3319. dos Santos CD, Toldo MP, do Prado Junior JC: Trypanosoma cruzi: the effects of dehydroepiandrosterone (DHEA) treatment during experimental infection. Acta Trop. 2005, 95: 109-115. 10.1016/j.actatropica.2005.05.005. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P: Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995, 26: 1068-1079. 10.1016/0735-1097(95)00282-8. Cowell PE, Turetsky BI, Gur RC, Grossman RI, Shtasel DL, Gur RE: Sex differences in aging of the human frontal and temporal lobes. J Neurosci. 1994, 14: 4748-4755. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M: Estrogen activates telomerase. Cancer Res. 1999, 59: 5917-5921. Tower J: Sex-specific regulation of aging and apoptosis. Mech Ageing Dev. 2006, 127: 705-718. 10.1016/j.mad.2006.05.001.