The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production

Springer Science and Business Media LLC - Tập 17 Số 3 - Trang 591-597 - 2012
Pakawadee Kaewkannetra1, Prayoon Enmak2, T.Y. Chiu3
1Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
2Postharvest and Processing Product Research and Development Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
3AECOM DB, Wentworth Business Park, Tankersley, Barnsley, S75 3DL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Olaizola, M. (2003) Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol. Bioproc. Engin. 8: 360–367.

Yue, L. and W. Chen (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Ener. Conver. Manage. 46: 1868–1876.

Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.

Gouveia, L. and A. C. Oliveira (2009) Microalgae as raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269–274.

Kalacheva, G. S., N. O. Zhila, and T. G. Volova (2002) Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aqua. Ecol. 36: 317–330.

Metzger, P. and C. Largeau (2005) Botryococcus braunii: A rich source for hydrocarbonsand related ether lipids. Appl. Microbiol. Biotechnol. 66: 486–496.

Negoro, M., N. Shioji, K. Miyamoto, and Y. Miura (1991) Growth of microalgae in high CO2 gas and effects of sox and nox. Appl. Biochem. Biotechnol. 28–29: 877–886.

Watanabe, Y., N. Ohmura, and H. Saiki (1992) Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Ener. Conver. Manage. 33: 545–552.

Kodama, M., H. Ikemoto, and S. Miyachi (1993) A new species of highly CO2-tolerant fast growing marine microalga suitable for high density culture. J. Marine Biotechnol. 1: 21–25.

Rao, A. R., C. Dayananda, R. Sarada, T. R. Shamala, and G. A. Ravishankar (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Biores. Technol. 98: 560–564.

Wang, Z. T., N. Ullrich, S. Joo, S. Waffenschmidt, and U. Goodenough (2009) Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Euka. Cell. 8: 1856–1868.

Fitter, H. and R. Hay (2002) Environmental physiology of plants. 3rd ed. Academic Press, London, UK.

Yeo, A. (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Botany 49: 915–929.

Largeau, C., E. Casadevall, C. Berkaloff, and P. Dhamelincourt (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemis. 19: 1043–1051.

Burdon, K. L. (1946) Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J. Bacteriol. 52: 665–667.

Ceron Garcia, M. C., A. Sanchez Miron, J. M. Fernandez Sevilla, E. Molina Grima, and F. Garcia Camacho (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum. Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Proc. Biochem. 40: 297–305.

Griffiths, M. J., C. Garcin, R. P. van Hille, and S. T. L. Harrison (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 85: 119–123.

Cheng, K. C., J. M. Catchmark, and A. Demirci (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3: 1–10.

Glazyrina, J., M. Krause S. Junne, F. Glauche, D. Strom, and P. Neubauer (2011) Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. New Biotechnol. 29: 235–242.

Liu, B. and Z. Zhao (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol. 82: 775–780.

Richmond, A. (2004) Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science Ltd.

Chinnasamy, S., A. Bhatnagar, R. W. Hunt, and K. C. Das (2010) Microlagae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101: 3097–3105.

Kodama, M., H. Ikemoto, and S. Miyachi (1993) A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. J. Marine Biotechnol. 1: 21–25.

Yue, L. and W. Chen (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conv. Manage. 46: 1846–1896.

Ho, S. H., W. M. Chen, and J. S. Chang (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101: 8725–8730.

de Morais, M. G. and J. A. V. Costa (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three stage serial tubular photobioreactor. J. Biotechnol. 129: 439–445.

Sanchez, F, J. M. Fernández, F. G. Acien, A. Rueda, J. Perez-Parra, and E. Molina (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Proc. Biochem. 43: 398–405.

Hasegawa, P. M., R. A. Bressan, J. K. Zhu, and H. J. Bohnert (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.

Ning, S. B., H. L. Guo, L. Wang, and Y. C. Song (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J. Appl. Microbiol. 93: 15–28.

Huh, G. H., B. Damsz, T. K. Matsumoto, M. P. Reddy, A. M. Rus, J. I. Ibeas, M. L. Narasimhan, R. A. Bressan, and P. M. Hasegawa (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. The Plant J. 29: 649–659.

Affenzeller, M. J., A. Darehshouri, A. Andosch, C. Lütz, and U. Lütz-Meindl (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 60: 939–954.

Takagi, M., Karseno, and T. Yoshida (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223–226.

Miao, X. and Q. Wu (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841–846.

Tang, D., W. Han P. Li, X. Miao, and J. Zhong (2011) CO2 biofixaton and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 102: 3071–3076.

Knothe, G. H. (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2: 759–766.

Chen, Y., B. Xiao, J. Chang, Y. Fu, P. Lv, and X. Wang (2009) Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Ener. Conv. Manage. 50: 668–673.