The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies

Muscle and Nerve - Tập 24 Số 12 - Trang 1575-1594 - 2001
Thomas A. Rando1,2
1Department of Neurology and Neurological Sciences, Stanford University Medical Center, Room A-343, Stanford, California 94305-5235, USA
2Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA

Tóm tắt

Abstract

Mutations of different components of the dystrophin–glycoprotein complex (DGC) cause muscular dystrophies that vary in terms of severity, age of onset, and selective involvement of muscle groups. Although the primary pathogenetic processes in the muscular dystrophies have clearly been identified as apoptotic and necrotic muscle cell death, the pathogenetic mechanisms that lead to cell death remain to be determined. Studies of components of the DGC in muscle and in nonmuscle tissues have revealed that the DGC is undoubtedly a multifunctional complex and a highly dynamic structure, in contrast to the unidimensional concept of the DGC as a mechanical component in the cell. Analysis of the DGC reveals compelling analogies to two other membrane‐associated protein complexes, namely integrins and caveolins. Each of these complexes mediates signal transduction cascades in the cell, and disruption of each complex causes muscular dystrophies. The signal transduction cascades associated with the DGC, like those associated with integrins and caveolins, play important roles in cell survival signaling, cellular defense mechanisms, and regulation of the balance between cell survival and cell death. This review focuses on the functional components of the DGC, highlighting the evidence of their participation in cellular signaling processes important for cell survival. Elucidating the link between these functional components and the pathogenetic processes leading to cell death is the foremost challenge to understanding the mechanisms of disease expression in the muscular dystrophies due to defects in the DGC. © 2001 John Wiley & Sons, Inc. Muscle Nerve 24: 1575–1594, 2001

Từ khóa


Tài liệu tham khảo

10.1016/S0014-5793(00)02038-X

10.1016/0896-6273(93)90157-M

10.1074/jbc.270.43.25859

10.1083/jcb.150.6.1385

10.1074/jbc.271.5.2724

10.1038/ng0493-283

10.1083/jcb.128.3.363

10.1073/pnas.91.10.4446

10.1074/jbc.274.50.35375

10.1074/jbc.271.12.6605

10.1002/(SICI)1097-0029(20000201/15)48:3/4<192::AID-JEMT7>3.0.CO;2-J

10.1016/S0014-5793(98)00804-7

10.1056/NEJM198807073190103

10.1074/jbc.M007799200

10.3109/15419069609010772

10.1074/jbc.274.12.7907

10.1083/jcb.147.3.645

10.1073/pnas.95.1.241

10.1074/jbc.271.13.7802

10.1111/j.1750-3639.1996.tb00781.x

10.1073/pnas.92.16.7162

Bonilla E, 1981, Freeze‐fracture studies of muscle caveolae in human muscular dystrophy, Am J Pathol, 104, 167

10.1126/science.286.5443.1358

10.1146/annurev.bi.63.070194.001135

10.1016/S0092-8674(00)81053-3

10.1016/0092-8674(95)90471-9

Brewster B, 1998, Neuromuscular disorders: clinical and molecular genetics, 323

Brown SC, 1999, Dystrophic phenotype induced in vitro by antibody blockade of muscle α‐dystroglycan–laminin interaction, J Cell Sci, 112, 209, 10.1242/jcs.112.2.209

10.1038/sj.cdd.4400582

10.1083/jcb.115.2.411

10.1126/science.282.5396.2079

10.1006/nbdi.1998.0188

10.1074/jbc.273.18.11321

Cary LA, 1999, Integrin‐mediated signal transduction pathways, Histol Histopathol, 14, 1001

10.1046/j.1471-4159.1999.721648.x

10.1016/S0898-6568(98)00025-4

10.1083/jcb.143.7.2033

10.1073/pnas.93.17.9142

10.1084/jem.184.2.609

10.1046/j.1471-4159.1998.71020784.x

10.1016/0014-5793(95)00578-W

10.1038/344064a0

10.1021/bi982564

10.1083/jcb.136.5.1047

10.1016/S0962-8924(97)01105-7

10.1002/1097-4598(200010)23:10<1456::AID-MUS2>3.0.CO;2-T

10.1172/JCI11642

10.1016/S0022-510X(99)00012-X

10.1111/j.1749-6632.1998.tb10907.x

10.1083/jcb.145.3.619

10.1016/S0092-8674(00)81975-3

10.1083/jcb.134.4.873

10.1038/15519

10.1038/ng1294-333

10.1074/jbc.272.50.31221

10.1083/jcb.145.1.153

10.1093/hmg/9.13.2019

10.1093/hmg/7.5.823

10.1016/S0014-5793(98)00442-6

10.1002/mus.880070903

10.1016/0014-5793(95)00764-Z

10.1101/gad.13.22.2905

10.1083/jcb.136.4.883

10.1016/S0005-2728(99)00024-9

10.1002/(SICI)1097-4598(200005)23:5<784::AID-MUS17>3.0.CO;2-Y

DisatnikM‐H Mochly‐RosenD RandoTA.Essential role of ϵPKC in integrin‐mediated muscle cell spreading. Submitted.

10.1016/S0022-510X(98)00258-5

10.1074/jbc.274.45.32486

10.1006/jmbi.1997.1138

Doctor RB, 1997, Loss of plasma membrane structural support in ATP‐depleted renal epithelia, Am J Physiol, 272, C439, 10.1152/ajpcell.1997.272.2.C439

Dubowitz V, 2000, What is muscular dystrophy? Forty years of progressive ignorance, J R Coll Phys Lond, 34, 464

10.1074/jbc.274.37.26609

10.1083/jcb.130.1.79

10.1016/0014-5793(95)01176-F

Emery AEH, 1993, Duchenne muscular dystrophy

10.1074/jbc.272.51.32534

10.1126/science.2173137

10.1038/sj.leu.2401967

10.1016/0143-4160(93)90006-R

GalbiatiF EngelmanJA VolonteD ZhangXL MinettiC LiM HouH KneitzB EdelmannW LisantiMP.Caveolin‐3 null mice show a loss of caveolae changes in the microdomain distribution of the dystrophin–glycoprotein complex and T‐tubule abnormalities. J Biol Chem (in press).

10.1073/pnas.160249097

10.1523/JNEUROSCI.18-01-00128.1998

10.1016/0092-8674(94)90052-3

10.1007/s100480050057

10.1046/j.1365-201X.1996.201000.x

10.1016/S0022-2275(20)32182-9

10.1002/ana.410440619

10.1038/12034

10.1083/jcb.136.4.871

10.1016/S0896-6273(00)80894-6

Grozdanovic Z, 1999, Nitric oxide synthase in skeletal muscle fibers: a signaling component of the dystrophin–glycoprotein complex, Histol Histopathol, 14, 243

10.1016/S0945-053X(97)90008-1

10.1073/pnas.96.19.10723

10.1083/jcb.142.5.1279

10.1016/0960-8966(94)90066-3

10.1074/jbc.274.18.12626

10.1038/ng0598-94

10.1016/S0955-0674(99)00024-1

Henry MD, 2001, Distinct roles for dystroglycan, β1 integrin and perlecan in cell surface laminin organization, J Cell Sci, 114, 1137, 10.1242/jcs.114.6.1137

10.1093/oxfordjournals.hmg.a018926

10.1038/sj.onc.1202211

10.1242/jcs.110.22.2873

10.1016/0960-8966(92)90059-F

10.1074/jbc.273.52.34667

10.1016/S0014-5793(00)01195-9

10.1016/0092-8674(92)90115-S

10.1038/355696a0

10.1093/hmg/2.10.1651

10.1093/hmg/9.20.3091

10.1016/S0014-5793(98)00085-4

Jacobson C, 1998, α‐Dystroglycan functions in acetylcholine receptor aggregation but is not a coreceptor for agrin‐MuSK signaling, J Neurosci, 18, 6340, 10.1523/JNEUROSCI.18-16-06340.1998

James M, 2000, Adhesion‐dependent tyrosine phosphorylation of β‐dystroglycan regulates its interaction with utrophin, J Cell Sci, 113, 1717, 10.1242/jcs.113.10.1717

10.1074/jbc.270.10.5578

10.1074/jbc.270.45.27305

10.1083/jcb.145.2.391

10.1074/jbc.274.4.2193

Koenig M, 1989, The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion, Am J Hum Genet, 45, 498

10.1016/0092-8674(88)90383-2

10.1016/S0959-4388(97)80064-5

10.1016/0014-5793(90)81356-S

Kramarcy NR, 1994, Association of utrophin and multiple dystrophin short forms with the mammalian Mr 58,000 dystrophin‐associated protein (syntrophin), J Biol Chem, 269, 2870, 10.1016/S0021-9258(17)42023-0

Kristensen SR, 1994, Mechanisms of cell damage and enzyme release, Dan Med Bull, 41, 423

10.1006/excr.1998.4025

10.1016/0012-1606(92)90129-5

10.1128/MCB.20.5.1669-1677.2000

10.1023/A:1005419617371

10.1006/geno.1997.4905

10.1074/jbc.273.36.23304

10.1073/pnas.88.8.3243

10.1016/0092-8674(92)90167-B

10.1042/bj2930243

10.1038/10165

10.1021/bi00185a018

10.1021/bi00038a014

10.1016/S0167-4838(99)00193-4

10.1016/0006-291X(92)91690-R

10.1096/fasebj.11.6.9194523

10.1038/ng1197-318

10.1002/mus.880171206

10.1016/0960-8966(95)00001-4

10.1093/hmg/5.11.1841

10.1139/o96-047

Milner RE, 1993, Phosphorylation of dystrophin. The carboxyl‐terminal region of dystrophin is a substrate for in vitro phosphorylation by p34cdc2 protein kinase, J Biol Chem, 268, 21901, 10.1016/S0021-9258(20)80626-7

10.1038/ng0498-365

10.1083/jcb.145.6.1325

10.1016/0009-2797(89)90075-6

10.1021/bi962452n

10.1016/S0960-9822(00)00760-0

10.1074/jbc.M008305200

10.1212/WNL.39.12.1610

10.1046/j.1432-1327.2000.00998.x

10.1083/jcb.120.5.1159

10.1083/jcb.115.6.1685

10.1074/jbc.273.10.5419

10.1078/0171-9335-00095

10.1002/(SICI)1097-4598(199804)21:4<421::AID-MUS1>3.0.CO;2-B

Padberg GW, 1998, Neuromuscular disorders: clinical and molecular genetics, 105

10.1083/jcb.138.1.81

10.1074/jbc.272.50.31561

10.1002/1531-8249(200012)48:6<902::AID-ANA11>3.0.CO;2-Z

10.1038/ng0593-82

10.1083/jcb.134.1.93

10.1126/science.282.5396.2076

RandoTA.The role of nitric oxide in the pathogenesis of muscular dystrophies: a “two hit” hypothesis of the cause of muscle necrosis. Microsc Res Techn 2001;55 (in press).

10.1016/S0960-8966(97)00124-7

10.1515/BC.1999.057

10.1006/bbrc.2000.3103

10.1083/jcb.135.3.661

10.1093/hmg/5.4.489

10.1073/pnas.94.23.12413

10.1074/jbc.274.39.27651

10.1074/jbc.274.12.8240

10.1073/pnas.250379497

10.1016/S0079-6107(98)00052-2

10.1038/nsb0198-19

10.1006/bbrc.1995.1009

10.1006/bbrc.1993.1500

10.1002/bies.950180109

Shemanko CS, 1995, Phosphorylation of the carboxyl terminal region of dystrophin by mitogen‐activated protein (MAP) kinase, Mol Cell Biochem, 152, 63, 10.1007/BF01076464

10.1126/science.2662404

10.1128/MCB.19.11.7289

10.1074/jbc.271.16.9690

10.1074/jbc.271.25.15160

10.1074/jbc.M005321200

10.1006/clim.2000.4966

10.1091/mbc.11.1.325

10.1016/S0955-0674(99)00027-7

10.1038/35052082

10.1083/jcb.128.3.373

10.1016/0014-5793(92)81265-N

10.1083/jcb.143.3.849

10.1111/j.1365-2990.1997.tb01304.x

10.1073/pnas.95.25.15090

10.1083/jcb.148.1.115

10.1111/j.1460-9568.1996.tb01568.x

Tidball JG, 1995, Apoptosis precedes necrosis of dystrophin‐deficient muscle, J Cell Sci, 108, 2197, 10.1242/jcs.108.6.2197

10.1038/360591a0

10.1073/pnas.91.18.8307

10.1006/mgme.1998.2763

Tome FMS, 1998, Neuromuscular disorders: clinical and molecular genetics, 21

10.1083/jcb.115.6.1701

10.1083/jcb.134.6.1483

10.1172/JCI119716

10.1016/S0014-5793(98)00738-8

10.1038/sj.ejhg.5200263

10.1074/jbc.272.45.28187

10.1021/bi00016a030

10.1016/S0092-8674(00)81604-9

10.1083/jcb.144.6.1285

10.1093/hmg/6.6.831

10.1016/0014-5793(94)01347-4

10.1016/S0891-5849(98)00092-6

10.1016/0092-8674(95)90184-1

10.1016/0014-5793(94)00917-1

10.1093/oxfordjournals.jbchem.a124128

10.1074/jbc.270.20.11711

10.1074/jbc.270.10.4975

Yang JT, 1993, Embryonic mesodermal defects in α5 integrin‐deficient mice, Development, 119, 1093, 10.1242/dev.119.4.1093

10.1093/hmg/9.7.1033

10.1006/bbrc.1996.1123

10.1074/jbc.273.3.1583

10.1016/S0387-7604(12)80123-9

10.1002/mus.1033

10.1096/fasebj.13.9001.s91