The dual functional role of MicroRNA‐18a (miR‐18a) in cancer development

Kongchao Shen1,2,3, Zhe Cao2,1, Ruizhe Zhu1, Lei You1, Taiping Zhang1
1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730 Beijing, China
2Kexin Shen and Zhe Cao made equal contributions and are considered co-first authors
3Tsinghua University School of Medicine, 100084 Beijing, China

Tóm tắt

AbstractThe polycistronic miR‐17‐92 cluster is instrumental in physiological processes commonly dysregulated in cancer, such as proliferation, the cell cycle, apoptosis, and differentiation. MicroRNA‐18a (miR‐18a) is one of the most conserved and multifunctional miRNAs in the cluster and is frequently overexpressed in malignant tumors. Altered miR‐18a expression has been found in various physiological and pathological processes, including cell proliferation, apoptosis, epithelial–mesenchymal transition (EMT), tumorigenesis, cancer invasion and metastasis. In this review, we summarized the molecular basis and regulatory targets of miR‐18a in cancer development. Interestingly, miR‐18a has a dual functional role in either promoting or inhibiting oncogenesis in different human cancers. The differential miRNA expression in cancers of the same organ at different stages or of various subtypes suggests that this dual function of miR‐18a is independent of cancer type and may be attributed to the fundamental differences in tumorigenic mechanisms. Finally, we summarized the current clinical use of miR‐18a and discussed its potential uses in cancer therapy.

Từ khóa


Tài liệu tham khảo

HeL HannonGJ(2004)MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet

LeeRC FeinbaumRL AmbrosV(1993)TheC. elegansheterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell.https://doi.org/10.1016/0092‐8674(93)90529‐Y

ReinhartBJ SlackFJ BassonMet al (2000)The 21‐nucleotide let‐7 RNA regulates developmental timing inCaenorhabditis elegans. Nature.https://doi.org/10.1038/35002607

10.1038/nrm2868

10.1038/nrg3074

10.1002/emmm.201100209

10.1111/imr.12050

HaM KimVN(2014)Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol.https://doi.org/10.1038/nrm3838

10.1186/s12935-015-0185-1

10.1158/2159-8290.CD-15-0893

OliveV LiQ HeL(2013)mir‐17‐92: a polycistronic oncomir with pleiotropic functions. Immunol Rev.https://doi.org/10.1111/imr.12054

10.1016/j.cell.2008.04.001

deMayoT ZieglerA MoralesS JaraL(2018)Identification of a rare germline heterozygous deletion involving the polycistronic miR‐17‐92 cluster in two first‐degree relatives from a BRCA 1/2 negative chilean family with familial breast cancer: possible functional implications. Int J Mol Sci.https://doi.org/10.3390/ijms19010321

ZhuH HanC LuD WuT(2014)MiR‐17‐92 cluster promotes cholangiocarcinoma growth evidence for pten as downstream target and IL‐6/Stat3 as upstream activator. Am J Pathol.https://doi.org/10.1016/j.ajpath.2014.06.024

HeL ThomsonJM HemannMTet al (2005)A microRNA polycistron as a potential human oncogene. Nature.https://doi.org/10.1038/nature03552

GuoL ZhaoY ZhangHet al (2014)Integrated evolutionary analysis of human miRNA gene clusters and families implicates evolutionary relationships. Gene.https://doi.org/10.1016/j.gene.2013.10.037

StarkA BrenneckeJ BushatiNet al (2005)Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell.https://doi.org/10.1016/j.cell.2005.11.023

BaekD VillénJ ShinCet al (2008)The impact of microRNAs on protein output. Nature.https://doi.org/10.1038/nature07242

SelbachM SchwanhäusserB ThierfelderNet al (2008)Widespread changes in protein synthesis induced by microRNAs. Nature.https://doi.org/10.1038/nature07228

10.1038/nrg2634

10.1007/s13277-016-5156-1

WeiY LaiX YuSet al (2014)Exosomal miR‐221/222 enhances tamoxifen resistance in recipient ER‐positive breast cancer cells. Breast Cancer Res Treat.https://doi.org/10.1007/s10549‐014‐3037‐0

10.1038/nrd.2016.246

10.1038/nrm2632

10.1038/nrg2843

LeeY AhnC HanJet al (2003)The nuclear RNase III Drosha initiates microRNA processing. Nature.https://doi.org/10.1038/nature01957

HanJ LeeY YeomKHet al (2004)The Drosha‐DGCR8 complex in primary microRNA processing. Genes Dev.https://doi.org/10.1101/gad.1262504

YeomKH LeeY HanJet al (2006)Characterization of DGCR8/Pasha the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res.https://doi.org/10.1093/nar/gkl458

ChongMMW ZhangG CheloufiSet al (2010)Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev.https://doi.org/10.1101/gad.1953310

HanJ PedersenJS KwonSCet al (2009)Posttranscriptional crossregulation between Drosha and DGCR8. Cell.https://doi.org/10.1016/j.cell.2008.10.053

KadenerS RodriguezJ AbruzziKCet al (2009)Genome‐wide identification of targets of the drosha‐pasha/DGCR8 complex. RNA.https://doi.org/10.1261/rna.1319309

XieM LiM VilborgAet al (2013)Mammalian 5′‐capped microRNA precursors that generate a single microRNA. Cell.https://doi.org/10.1016/j.cell.2013.11.027

FörstemannK TomariY DuTet al (2005)Normal microRNA maturation and germ‐line stem cell maintenance requires loquacious a double‐stranded RNA‐binding domain protein. PLoS Biol.https://doi.org/10.1371/journal.pbio.0030236

JiangF YeX LiuXet al (2005)Dicer‐1 and R3D1‐L catalyze microRNA maturation in Drosophila. Genes Dev.https://doi.org/10.1101/gad.1334005

SaitoK IshizukaA SiomiH SiomiMC(2005)Processing of pre‐microRNAs by the Dicer‐1‐Loquacious complex in drosophila cells. PLoS Biol.https://doi.org/10.1371/journal.pbio.0030235

MourelatosZ DostieJ PaushkinSet al (2002)miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.https://doi.org/10.1101/gad.974702

TabaraH SarkissianM KellyWGet al (1999)The rde‐1 gene RNA interference and transposon silencing inC. elegans. Cell.https://doi.org/10.1016/S0092‐8674(00)81644‐X

IwasakiS KobayashiM YodaMet al (2010)Hsc70/Hsp90 chaperone machinery mediates ATP‐dependent RISC loading of small RNA duplexes. Mol Cell.https://doi.org/10.1016/j.molcel.2010.05.015

Sanz‐RubioD Martin‐BurrielI GilAet al (2018)Stability of circulating exosomal miRNAs in healthy subjects article. Sci Rep.https://doi.org/10.1038/s41598‐018‐28748‐5

10.3390/ijms140714240

10.1002/wrna.115

MichlewskiG GuilS SempleCA CáceresJF(2008)Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell.https://doi.org/10.1016/j.molcel.2008.10.013

GuilS CáceresJF(2007)The multifunctional RNA‐binding protein hnRNP A1 is required for processing of miR‐18a. Nat Struct Mol Biol.https://doi.org/10.1038/nsmb1250

KooshapurH ChoudhuryNR SimonBet al (2018)Structural basis for terminal loop recognition and stimulation of pri‐miRNA‐18a processing by hnRNP A1. Nat Commun.https://doi.org/10.1038/s41467‐018‐04871‐9

AuyeungVC UlitskyI McGearySE BartelDP(2013)Beyond secondary structure: primary‐sequence determinants license Pri‐miRNA hairpins for processing. Cell.https://doi.org/10.1016/j.cell.2013.01.031

NguyenTA JoMH ChoiYGet al (2015)Functional anatomy of the human microprocessor. Cell.https://doi.org/10.1016/j.cell.2015.05.010

PartinAC NgoTD HerrellEet al (2017)Heme enables proper positioning of drosha and DGCR8 on primary microRNAs. Nat Commun.https://doi.org/10.1038/s41467‐017‐01713‐y

RodenC GaillardJ KanoriaSet al (2017)Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin‐containing transcripts and human genetic variation. Genome Res.https://doi.org/10.1101/gr.208900.116

FangW BartelDP(2015)The menu of features that define primary MicroRNAs and enable de novo design of MicroRNA genes. Mol Cell.https://doi.org/10.1016/j.molcel.2015.08.015

KimK Duc NguyenT LiS Anh NguyenT(2018)SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA.https://doi.org/10.1261/rna.065862.118

DuP WangL SlizP GregoryRI(2015)A biogenesis step upstream of microprocessor controls miR‐17~92 expression. Cell.https://doi.org/10.1016/j.cell.2015.07.008

MandelCR KanekoS ZhangHet al (2006)Polyadenylation factor CPSF‐73 is the pre‐mRNA 3′‐end‐processing endonuclease. Nature.https://doi.org/10.1038/nature05363

DominskiZ YangXC MarzluffWF(2005)The polyadenylation factor CPSF‐73 is involved in histone‐pre‐mRNA processing. Cell.https://doi.org/10.1016/j.cell.2005.08.002

LiangC ZhangX WangHMet al (2017)MicroRNA‐18a‐5p functions as an oncogene by directly targeting IRF2 in lung cancer. Cell Death Dis.https://doi.org/10.1038/cddis.2017.145

10.1007/s00262-009-0804-6

DongP XiongY YuJet al (2018)Control of PD‐L1 expression by miR‐140/142/340/383 and oncogenic activation of the OCT4–miR‐18a pathway in cervical cancer. Oncogene.https://doi.org/10.1038/s41388‐018‐0347‐4

MezacheL PanicciaB NyinawaberaA NuovoGJ(2015)Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol.https://doi.org/10.1038/modpathol.2015.108

HsuTI HsuCH LeeKHet al (2014)MicroRNA‐18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis.https://doi.org/10.1038/oncsis.2014.12

LeeKK OhyamaT YajimaNet al (2001)MST a physiological caspase substrate highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem.https://doi.org/10.1074/jbc.M005109200

10.1038/nri1667

WuW TakanashiM BorjiginNet al (2013)MicroRNA‐18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer.https://doi.org/10.1038/bjc.2012.587

10.1172/JCI9940

KondoS ShinomuraY KanayamaSet al (1996)Over‐expression of bcl‐xL gene in human gastric adenomas and carcinomas. Int J Cancer.https://doi.org/10.1002/(SICI)1097‐0215(19961211)68:6%3c727:AID‐IJC6%3e3.0.CO;2‐5

ChenJP LinC XuCPet al (2001)Molecular therapy with recombinant antisense c‐myc adenovirus for human gastric carcinoma cells in vitro and in vivo. J Gastroenterol Hepatol.https://doi.org/10.1046/j.1440‐1746.2001.02361.x

YuJ LeungWK EbertMPAet al (2002)Increased expression of survivin in gastric cancer patients and in first degree relatives. Br J Cancer.https://doi.org/10.1038/sj.bjc.6600421

HeT McCollK SakreNet al (2018)Post‐transcriptional regulation of PIAS3 expression by miR‐18a in malignant mesothelioma. Mol Oncol.https://doi.org/10.1002/1878‐0261.12386

10.1074/jbc.M111.251793

10.1371/journal.pone.0112288

ZhangN ZhangH LiuYet al (2019)SREBP1 targeted by miR‐18a‐5p modulates epithelial‐mesenchymal transition in breast cancer via forming a co‐repressor complex with Snail and HDAC1/2. Cell Death Differ.https://doi.org/10.1038/s41418‐018‐0158‐8

LiW TaiY ZhouJet al (2012)Repression of endometrial tumor growth by targeting SREBP1 and lipogenesis. Cell Cycle.https://doi.org/10.4161/cc.20811

BaoJ ZhuL ZhuQet al (2016)SREBP‐1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett.https://doi.org/10.3892/ol.2016.4988

PeinadoH BallestarE EstellerM CanoA(2004)Snail mediates E‐cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol.https://doi.org/10.1128/mcb.24.1.306‐319.2004

vonBurstinJ EserS PaulMCet al (2009)E‐cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology.https://doi.org/10.1053/j.gastro.2009.04.004

ZhaiD CuiC XieLet al (2018)Sterol regulatory element‐binding protein 1 cooperates with c‐myc to promote epithelial‐mesenchymal transition in colorectal cancer. Oncol Lett.https://doi.org/10.3892/ol.2018.8058

LiX ZhangZ LiYet al (2017)MiR‐18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells. Sci Rep.https://doi.org/10.1038/srep45002

GeraJF MellinghoffIK ShiYet al (2004)AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c‐myc expression. J Biol Chem.https://doi.org/10.1074/jbc.M309999200

ChioseaS JelezcovaE ChandranUet al (2007)Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res.https://doi.org/10.1158/0008‐5472.CAN‐06‐3533

MitchellPS ParkinRK KrohEMet al (2008)Circulating microRNAs as stable blood‐based markers for cancer detection. Proc Natl Acad Sci.https://doi.org/10.1073/pnas.0804549105

KosakaN IguchiH YoshiokaYet al (2010)Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem.https://doi.org/10.1074/jbc.M110.107821

ArroyoJD ChevilletJR KrohEMet al (2011)Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci.https://doi.org/10.1073/pnas.1019055108

UliviP FoschiG MengozziMet al (2013)Peripheral blood miR‐328 expression as a potential biomarker for the early diagnosis of NSCLC. Int J Mol Sci.https://doi.org/10.3390/ijms140510332

TsujiuraM KomatsuS IchikawaDet al (2015)Circulating miR‐18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer.https://doi.org/10.1007/s10120‐014‐0363‐1

VegaAB PericayC MoyaIet al (2013)microRNA expression profile in stage III colorectal cancer: circulating miR‐18a and miR‐29a as promising biomarkers. Oncol Rep.https://doi.org/10.3892/or.2013.2475

GodfreyAC XuZ WeinbergCRet al (2013)Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Res.https://doi.org/10.1186/bcr3428

ChenX WuL LiDet al (2018)Radiosensitizing effects of miR‐18a‐5p on lung cancer stem‐like cells via downregulating both ATM and HIF‐1α. Cancer Med.https://doi.org/10.1002/cam4.1527

HuangX MagnusJ KaimalVet al (2017)Lipid nanoparticle‐mediated delivery of anti‐miR‐17 family oligonucleotide suppresses hepatocellular carcinoma growth. Mol Cancer Ther.https://doi.org/10.1158/1535‐7163.mct‐16‐0613

SongL LinC WuZet al (2011)MiR‐18a impairs DNA damage response through downregulation of Ataxia telangiectasia mutated (ATM) kinase. PLoS ONE.https://doi.org/10.1371/journal.pone.0025454

KrutilinaR SunW SethuramanAet al (2014)MicroRNA‐18a inhibits hypoxia‐inducible factor 1α activity and lung metastasis in basal breast cancers. Breast Cancer Res.https://doi.org/10.1186/bcr3693

LiuS PanX YangQet al (2015)MicroRNA‐18a enhances the radiosensitivity of cervical cancer cells by promoting radiation‐induced apoptosis. Oncol Rep.https://doi.org/10.3892/or.2015.3929

WuCW DongYJ LiangQYet al (2013)MicroRNA‐18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS ONE.https://doi.org/10.1371/journal.pone.0057036

WuF HuangW WangX(2015)microRNA‐18a regulates gastric carcinoma cell apoptosis and invasion by suppressing hypoxia‐inducible factor‐1α expression. Exp Ther Med.https://doi.org/10.3892/etm.2015.2546

LiP GaoY LiFet al (2015)MicroRNA‐18a regulates invasive meningiomas via hypoxia‐inducible factor‐1α. Exp Ther Med.https://doi.org/10.3892/etm.2015.2630