The dual functional role of MicroRNA‐18a (miR‐18a) in cancer development
Tóm tắt
Từ khóa
Tài liệu tham khảo
LeeRC FeinbaumRL AmbrosV(1993)TheC. elegansheterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell.https://doi.org/10.1016/0092‐8674(93)90529‐Y
ReinhartBJ SlackFJ BassonMet al (2000)The 21‐nucleotide let‐7 RNA regulates developmental timing inCaenorhabditis elegans. Nature.https://doi.org/10.1038/35002607
HaM KimVN(2014)Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol.https://doi.org/10.1038/nrm3838
OliveV LiQ HeL(2013)mir‐17‐92: a polycistronic oncomir with pleiotropic functions. Immunol Rev.https://doi.org/10.1111/imr.12054
deMayoT ZieglerA MoralesS JaraL(2018)Identification of a rare germline heterozygous deletion involving the polycistronic miR‐17‐92 cluster in two first‐degree relatives from a BRCA 1/2 negative chilean family with familial breast cancer: possible functional implications. Int J Mol Sci.https://doi.org/10.3390/ijms19010321
ZhuH HanC LuD WuT(2014)MiR‐17‐92 cluster promotes cholangiocarcinoma growth evidence for pten as downstream target and IL‐6/Stat3 as upstream activator. Am J Pathol.https://doi.org/10.1016/j.ajpath.2014.06.024
HeL ThomsonJM HemannMTet al (2005)A microRNA polycistron as a potential human oncogene. Nature.https://doi.org/10.1038/nature03552
GuoL ZhaoY ZhangHet al (2014)Integrated evolutionary analysis of human miRNA gene clusters and families implicates evolutionary relationships. Gene.https://doi.org/10.1016/j.gene.2013.10.037
StarkA BrenneckeJ BushatiNet al (2005)Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell.https://doi.org/10.1016/j.cell.2005.11.023
BaekD VillénJ ShinCet al (2008)The impact of microRNAs on protein output. Nature.https://doi.org/10.1038/nature07242
SelbachM SchwanhäusserB ThierfelderNet al (2008)Widespread changes in protein synthesis induced by microRNAs. Nature.https://doi.org/10.1038/nature07228
WeiY LaiX YuSet al (2014)Exosomal miR‐221/222 enhances tamoxifen resistance in recipient ER‐positive breast cancer cells. Breast Cancer Res Treat.https://doi.org/10.1007/s10549‐014‐3037‐0
LeeY AhnC HanJet al (2003)The nuclear RNase III Drosha initiates microRNA processing. Nature.https://doi.org/10.1038/nature01957
HanJ LeeY YeomKHet al (2004)The Drosha‐DGCR8 complex in primary microRNA processing. Genes Dev.https://doi.org/10.1101/gad.1262504
YeomKH LeeY HanJet al (2006)Characterization of DGCR8/Pasha the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res.https://doi.org/10.1093/nar/gkl458
ChongMMW ZhangG CheloufiSet al (2010)Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev.https://doi.org/10.1101/gad.1953310
HanJ PedersenJS KwonSCet al (2009)Posttranscriptional crossregulation between Drosha and DGCR8. Cell.https://doi.org/10.1016/j.cell.2008.10.053
KadenerS RodriguezJ AbruzziKCet al (2009)Genome‐wide identification of targets of the drosha‐pasha/DGCR8 complex. RNA.https://doi.org/10.1261/rna.1319309
XieM LiM VilborgAet al (2013)Mammalian 5′‐capped microRNA precursors that generate a single microRNA. Cell.https://doi.org/10.1016/j.cell.2013.11.027
FörstemannK TomariY DuTet al (2005)Normal microRNA maturation and germ‐line stem cell maintenance requires loquacious a double‐stranded RNA‐binding domain protein. PLoS Biol.https://doi.org/10.1371/journal.pbio.0030236
JiangF YeX LiuXet al (2005)Dicer‐1 and R3D1‐L catalyze microRNA maturation in Drosophila. Genes Dev.https://doi.org/10.1101/gad.1334005
SaitoK IshizukaA SiomiH SiomiMC(2005)Processing of pre‐microRNAs by the Dicer‐1‐Loquacious complex in drosophila cells. PLoS Biol.https://doi.org/10.1371/journal.pbio.0030235
MourelatosZ DostieJ PaushkinSet al (2002)miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.https://doi.org/10.1101/gad.974702
TabaraH SarkissianM KellyWGet al (1999)The rde‐1 gene RNA interference and transposon silencing inC. elegans. Cell.https://doi.org/10.1016/S0092‐8674(00)81644‐X
IwasakiS KobayashiM YodaMet al (2010)Hsc70/Hsp90 chaperone machinery mediates ATP‐dependent RISC loading of small RNA duplexes. Mol Cell.https://doi.org/10.1016/j.molcel.2010.05.015
Sanz‐RubioD Martin‐BurrielI GilAet al (2018)Stability of circulating exosomal miRNAs in healthy subjects article. Sci Rep.https://doi.org/10.1038/s41598‐018‐28748‐5
MichlewskiG GuilS SempleCA CáceresJF(2008)Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell.https://doi.org/10.1016/j.molcel.2008.10.013
GuilS CáceresJF(2007)The multifunctional RNA‐binding protein hnRNP A1 is required for processing of miR‐18a. Nat Struct Mol Biol.https://doi.org/10.1038/nsmb1250
KooshapurH ChoudhuryNR SimonBet al (2018)Structural basis for terminal loop recognition and stimulation of pri‐miRNA‐18a processing by hnRNP A1. Nat Commun.https://doi.org/10.1038/s41467‐018‐04871‐9
AuyeungVC UlitskyI McGearySE BartelDP(2013)Beyond secondary structure: primary‐sequence determinants license Pri‐miRNA hairpins for processing. Cell.https://doi.org/10.1016/j.cell.2013.01.031
NguyenTA JoMH ChoiYGet al (2015)Functional anatomy of the human microprocessor. Cell.https://doi.org/10.1016/j.cell.2015.05.010
PartinAC NgoTD HerrellEet al (2017)Heme enables proper positioning of drosha and DGCR8 on primary microRNAs. Nat Commun.https://doi.org/10.1038/s41467‐017‐01713‐y
RodenC GaillardJ KanoriaSet al (2017)Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin‐containing transcripts and human genetic variation. Genome Res.https://doi.org/10.1101/gr.208900.116
FangW BartelDP(2015)The menu of features that define primary MicroRNAs and enable de novo design of MicroRNA genes. Mol Cell.https://doi.org/10.1016/j.molcel.2015.08.015
KimK Duc NguyenT LiS Anh NguyenT(2018)SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA.https://doi.org/10.1261/rna.065862.118
DuP WangL SlizP GregoryRI(2015)A biogenesis step upstream of microprocessor controls miR‐17~92 expression. Cell.https://doi.org/10.1016/j.cell.2015.07.008
MandelCR KanekoS ZhangHet al (2006)Polyadenylation factor CPSF‐73 is the pre‐mRNA 3′‐end‐processing endonuclease. Nature.https://doi.org/10.1038/nature05363
DominskiZ YangXC MarzluffWF(2005)The polyadenylation factor CPSF‐73 is involved in histone‐pre‐mRNA processing. Cell.https://doi.org/10.1016/j.cell.2005.08.002
LiangC ZhangX WangHMet al (2017)MicroRNA‐18a‐5p functions as an oncogene by directly targeting IRF2 in lung cancer. Cell Death Dis.https://doi.org/10.1038/cddis.2017.145
DongP XiongY YuJet al (2018)Control of PD‐L1 expression by miR‐140/142/340/383 and oncogenic activation of the OCT4–miR‐18a pathway in cervical cancer. Oncogene.https://doi.org/10.1038/s41388‐018‐0347‐4
MezacheL PanicciaB NyinawaberaA NuovoGJ(2015)Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol.https://doi.org/10.1038/modpathol.2015.108
HsuTI HsuCH LeeKHet al (2014)MicroRNA‐18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis.https://doi.org/10.1038/oncsis.2014.12
LeeKK OhyamaT YajimaNet al (2001)MST a physiological caspase substrate highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem.https://doi.org/10.1074/jbc.M005109200
WuW TakanashiM BorjiginNet al (2013)MicroRNA‐18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer.https://doi.org/10.1038/bjc.2012.587
KondoS ShinomuraY KanayamaSet al (1996)Over‐expression of bcl‐xL gene in human gastric adenomas and carcinomas. Int J Cancer.https://doi.org/10.1002/(SICI)1097‐0215(19961211)68:6%3c727:AID‐IJC6%3e3.0.CO;2‐5
ChenJP LinC XuCPet al (2001)Molecular therapy with recombinant antisense c‐myc adenovirus for human gastric carcinoma cells in vitro and in vivo. J Gastroenterol Hepatol.https://doi.org/10.1046/j.1440‐1746.2001.02361.x
YuJ LeungWK EbertMPAet al (2002)Increased expression of survivin in gastric cancer patients and in first degree relatives. Br J Cancer.https://doi.org/10.1038/sj.bjc.6600421
HeT McCollK SakreNet al (2018)Post‐transcriptional regulation of PIAS3 expression by miR‐18a in malignant mesothelioma. Mol Oncol.https://doi.org/10.1002/1878‐0261.12386
ZhangN ZhangH LiuYet al (2019)SREBP1 targeted by miR‐18a‐5p modulates epithelial‐mesenchymal transition in breast cancer via forming a co‐repressor complex with Snail and HDAC1/2. Cell Death Differ.https://doi.org/10.1038/s41418‐018‐0158‐8
LiW TaiY ZhouJet al (2012)Repression of endometrial tumor growth by targeting SREBP1 and lipogenesis. Cell Cycle.https://doi.org/10.4161/cc.20811
BaoJ ZhuL ZhuQet al (2016)SREBP‐1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett.https://doi.org/10.3892/ol.2016.4988
PeinadoH BallestarE EstellerM CanoA(2004)Snail mediates E‐cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol.https://doi.org/10.1128/mcb.24.1.306‐319.2004
vonBurstinJ EserS PaulMCet al (2009)E‐cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology.https://doi.org/10.1053/j.gastro.2009.04.004
ZhaiD CuiC XieLet al (2018)Sterol regulatory element‐binding protein 1 cooperates with c‐myc to promote epithelial‐mesenchymal transition in colorectal cancer. Oncol Lett.https://doi.org/10.3892/ol.2018.8058
LiX ZhangZ LiYet al (2017)MiR‐18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells. Sci Rep.https://doi.org/10.1038/srep45002
GeraJF MellinghoffIK ShiYet al (2004)AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c‐myc expression. J Biol Chem.https://doi.org/10.1074/jbc.M309999200
ChioseaS JelezcovaE ChandranUet al (2007)Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res.https://doi.org/10.1158/0008‐5472.CAN‐06‐3533
MitchellPS ParkinRK KrohEMet al (2008)Circulating microRNAs as stable blood‐based markers for cancer detection. Proc Natl Acad Sci.https://doi.org/10.1073/pnas.0804549105
KosakaN IguchiH YoshiokaYet al (2010)Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem.https://doi.org/10.1074/jbc.M110.107821
ArroyoJD ChevilletJR KrohEMet al (2011)Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci.https://doi.org/10.1073/pnas.1019055108
UliviP FoschiG MengozziMet al (2013)Peripheral blood miR‐328 expression as a potential biomarker for the early diagnosis of NSCLC. Int J Mol Sci.https://doi.org/10.3390/ijms140510332
TsujiuraM KomatsuS IchikawaDet al (2015)Circulating miR‐18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer.https://doi.org/10.1007/s10120‐014‐0363‐1
VegaAB PericayC MoyaIet al (2013)microRNA expression profile in stage III colorectal cancer: circulating miR‐18a and miR‐29a as promising biomarkers. Oncol Rep.https://doi.org/10.3892/or.2013.2475
GodfreyAC XuZ WeinbergCRet al (2013)Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Res.https://doi.org/10.1186/bcr3428
ChenX WuL LiDet al (2018)Radiosensitizing effects of miR‐18a‐5p on lung cancer stem‐like cells via downregulating both ATM and HIF‐1α. Cancer Med.https://doi.org/10.1002/cam4.1527
HuangX MagnusJ KaimalVet al (2017)Lipid nanoparticle‐mediated delivery of anti‐miR‐17 family oligonucleotide suppresses hepatocellular carcinoma growth. Mol Cancer Ther.https://doi.org/10.1158/1535‐7163.mct‐16‐0613
SongL LinC WuZet al (2011)MiR‐18a impairs DNA damage response through downregulation of Ataxia telangiectasia mutated (ATM) kinase. PLoS ONE.https://doi.org/10.1371/journal.pone.0025454
KrutilinaR SunW SethuramanAet al (2014)MicroRNA‐18a inhibits hypoxia‐inducible factor 1α activity and lung metastasis in basal breast cancers. Breast Cancer Res.https://doi.org/10.1186/bcr3693
LiuS PanX YangQet al (2015)MicroRNA‐18a enhances the radiosensitivity of cervical cancer cells by promoting radiation‐induced apoptosis. Oncol Rep.https://doi.org/10.3892/or.2015.3929
WuCW DongYJ LiangQYet al (2013)MicroRNA‐18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS ONE.https://doi.org/10.1371/journal.pone.0057036
WuF HuangW WangX(2015)microRNA‐18a regulates gastric carcinoma cell apoptosis and invasion by suppressing hypoxia‐inducible factor‐1α expression. Exp Ther Med.https://doi.org/10.3892/etm.2015.2546