Bên tối của θ 13, δ CP, leptogenesis và lạm phát trong cơ chế seesaw loại I

Journal of High Energy Physics - Tập 2014 - Trang 1-27 - 2014
Wei-Chih Huang1
1Department of Physics and Astronomy, University College London, London, U.K

Tóm tắt

Trong bối cảnh cơ chế seesaw loại I, có một sự thật đã được biết đến rằng θ 13 bằng không và leptogenesis không thể được thực hiện nếu tồn tại một đối xứng hương vị dư thừa dẫn đến mô hình pha trộn neutrino Tri-Bimaximal. Chúng tôi đề xuất một khuôn khổ đơn giản, trong đó các hạt bổ sung, không bảo toàn dưới một đối xứng Z 2, phá vỡ đối xứng hương vị dư thừa và hạt nhẹ nhất trong số các hạt lạ Z 2 sẽ là ứng cử viên cho vật chất tối. Kết quả là, θ 13 không bằng không, δ CP, leptogenesis và mật độ vật chất tối đúng có thể được đáp ứng. Mặt khác, một số vô hướng Z 2 có thể đóng vai trò như inflaton với khối lượng 1013 GeV được thúc đẩy bởi các kết quả gần đây của BICEP2. Điều đáng chú ý là mô hình có thể “tạo ra” δ CP ≃ −π/2, được ưa chuộng bởi thí nghiệm T2K trong phổ khối lượng neutrino phân cấp bình thường.

Từ khóa

#seesaw loại I #θ 13 #δ CP #leptogenesis #vật chất tối #inflaton

Tài liệu tham khảo

P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE]. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D. Freedman and P. Van Niuenhuizen eds., North Holland, Amsterdam The Netherlands (1979), pg. 315 [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE]. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979) [Conf. Proc. C 7902131 (1979) 95] [INSPIRE]. S.L. Glashow, The future of elementary particle physics, in 1979 Cargèse lectures in physics — quarks and leptons, M. Lévy et al. eds., Plenum, New York U.S.A. (1980), pg. 707 [INSPIRE]. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE]. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE]. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE]. P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE]. Z.-Z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE]. P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE]. P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE]. P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [INSPIRE]. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE]. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE]. E. Ma, Tri-bimaximal neutrino mixing from a supersymmetric model with A 4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [INSPIRE]. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE]. S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE]. Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [INSPIRE]. M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE]. C. Hagedorn, M. Lindner and R.N. Mohapatra, S 4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE]. G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S 4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE]. F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S 4 -based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE]. P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE]. P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and proton decay in a minimal SO(10) × S 4 model of flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE]. M.-C. Chen and K.T. Mahanthappa, CKM and tri-bimaximal MNS matrices in a SU(5) ×(d) T model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [INSPIRE]. M.-C. Chen and K.T. Mahanthappa, Group theoretical origin of CP-violation, Phys. Lett. B 681 (2009) 444 [arXiv:0904.1721] [INSPIRE]. A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5) × T′ unified model of flavour with large θ 13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE]. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE]. DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE]. RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE]. MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE]. T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE]. D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-bimaximal lepton mixing and leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [INSPIRE]. E.E. Jenkins and A.V. Manohar, Tri-bimaximal mixing, leptogenesis and θ 13, Phys. Lett. B 668 (2008) 210 [arXiv:0807.4176] [INSPIRE]. E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [INSPIRE]. C. Hagedorn, E. Molinaro and S.T. Petcov, Majorana phases and leptogenesis in see-saw models with A 4 symmetry, JHEP 09 (2009) 115 [arXiv:0908.0240] [INSPIRE]. R.G. Felipe and H. Serodio, Constraints on leptogenesis from a symmetry viewpoint, Phys. Rev. D 81 (2010) 053008 [arXiv:0908.2947] [INSPIRE]. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE]. C.I. Low and R.R. Volkas, Tri-bimaximal mixing, discrete family symmetries and a conjecture connecting the quark and lepton mixing matrices, Phys. Rev. D 68 (2003) 033007 [hep-ph/0305243] [INSPIRE]. S. Choubey, S.F. King and M. Mitra, On the vanishing of the CP asymmetry in leptogenesis due to form dominance, Phys. Rev. D 82 (2010) 033002 [arXiv:1004.3756] [INSPIRE]. BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE]. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE]. J. March-Russell, C. McCabe and M. McCullough, Neutrino-flavoured sneutrino dark matter, JHEP 03 (2010) 108 [arXiv:0911.4489] [INSPIRE]. B. Batell, J. Pradler and M. Spannowsky, Dark matter from minimal flavor violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE]. P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored dark matter and its implications for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE]. J. Kile and A. Soni, Flavored dark matter in direct detection experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE]. J.F. Kamenik and J. Zupan, Discovering dark matter through flavor violation at the LHC, Phys. Rev. D 84 (2011) 111502 [arXiv:1107.0623] [INSPIRE]. B. Batell, T. Lin and L.-T. Wang, Flavored dark matter and R-parity violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE]. A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE]. L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE]. J. Kile, Flavored dark matter: a review, Mod. Phys. Lett. A 28 (2013) 1330031 [arXiv:1308.0584] [INSPIRE]. T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE]. M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE]. M.S. Boucenna et al., Phenomenology of dark matter from A 4 flavor symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE]. Y.H. Ahn and H. Okada, Non-zero θ 13 linking to dark matter from non-Abelian discrete flavor model in radiative seesaw, Phys. Rev. D 85 (2012) 073010 [arXiv:1201.4436] [INSPIRE]. E. Ma, A. Natale and A. Rashed, Scotogenic A 4 neutrino model for nonzero θ 13 and large δ CP , Int. J. Mod. Phys. A 27 (2012) 1250134 [arXiv:1206.1570] [INSPIRE]. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE]. T2K collaboration, K. Abe et al., Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam, Phys. Rev. Lett. 111 (2013) 211803 [arXiv:1308.0465] [INSPIRE]. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE]. J.A. Acosta, A. Aranda, M.A. Buen-Abad and A.D. Rojas, Non-diagonal charged lepton mass matrix and non-zero θ 13, Phys. Lett. B 718 (2013) 1413 [arXiv:1207.6093] [INSPIRE]. J.A. Acosta, A. Aranda and J. Virrueta, CP violating phase from charged-lepton mixing, JHEP 04 (2014) 134 [arXiv:1402.0754] [INSPIRE]. J. Kile, M.J. Pérez, P. Ramond and J. Zhang, θ 13 and the flavor ring, Phys. Rev. D 90 (2014) 013004 [arXiv:1403.6136] [INSPIRE]. U. Seljak, A. Slosar and P. McDonald, Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints, JCAP 10 (2006) 014 [astro-ph/0604335] [INSPIRE]. S. Joudaki, Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces, Phys. Rev. D 87 (2013) 083523 [arXiv:1202.0005] [INSPIRE]. J.-Q. Xia et al., Constraints on massive neutrinos from the CFHTLS angular power spectrum, JCAP 06 (2012) 010 [arXiv:1203.5105] [INSPIRE]. S. Riemer-Sorensen, D. Parkinson, T.M. Davis and C. Blake, Simultaneous constraints on the number and mass of relativistic species, Astrophys. J. 763 (2013) 89 [arXiv:1210.2131] [INSPIRE]. G.-B. Zhao et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample, Mon. Not. Roy. Astron. Soc. 436 (2013) 2038 [arXiv:1211.3741] [INSPIRE]. S. Riemer-Sørensen, D. Parkinson and T.M. Davis, Combining Planck with large scale structure gives strong neutrino mass constraint, arXiv:1306.4153 [INSPIRE]. A. de Gouvêa and J. Jenkins, The physical range of Majorana neutrino mixing parameters, Phys. Rev. D 78 (2008) 053003 [arXiv:0804.3627] [INSPIRE]. A. de Gouvêa, W.-C. Huang and S. Shalgar, Parameterizing Majorana neutrino couplings in the Higgs sector, Phys. Rev. D 84 (2011) 035011 [arXiv:1007.3664] [INSPIRE]. E. Ma, The all purpose neutrino mass matrix, Phys. Rev. D 66 (2002) 117301 [hep-ph/0207352] [INSPIRE]. J. Liao, D. Marfatia and K. Whisnant, Perturbations to μ-τ symmetry in neutrino mixing, Phys. Rev. D 87 (2013) 013003 [arXiv:1205.6860] [INSPIRE]. M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [INSPIRE]. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE]. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE]. M. Tavakoli, I. Cholis, C. Evoli and P. Ullio, Constraints on dark matter annihilations from diffuse gamma-ray emission in the galaxy, JCAP 01 (2014) 017 [arXiv:1308.4135] [INSPIRE]. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE]. S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE]. G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE]. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE]. S.Y. Khlebnikov and M.E. Shaposhnikov, The statistical theory of anomalous Fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE]. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE]. F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE]. P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE]. P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev. D 37 (1988) 1020 [INSPIRE]. W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE]. M.-C. Chen, TASI 2006 lectures on leptogenesis, hep-ph/0703087 [INSPIRE]. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE]. P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE]. O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [INSPIRE]. S. Blanchet and P. Di Bari, Leptogenesis beyond the limit of hierarchical heavy neutrino masses, JCAP 06 (2006) 023 [hep-ph/0603107] [INSPIRE]. A. Strumia, Baryogenesis via leptogenesis, hep-ph/0608347 [INSPIRE]. G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N 2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [INSPIRE]. D. Aristizabal Sierra, C.S. Fong, E. Nardi and E. Peinado, Cloistered baryogenesis, JCAP 02 (2014) 013 [arXiv:1309.4770] [INSPIRE]. J. Racker, Mass bounds for baryogenesis from particle decays and the inert doublet model, JCAP 03 (2014) 025 [arXiv:1308.1840] [INSPIRE]. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE]. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE]. A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE]. W.H. Kinney, TASI lectures on inflation, arXiv:0902.1529 [INSPIRE]. D. Baumann, TASI lectures on inflation, arXiv:0907.5424 [INSPIRE]. J. Martin, C. Ringeval and V. Vennin, Encyclopædia inflationaris, Phys. Dark Univ. (2014) [arXiv:1303.3787] [INSPIRE]. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE]. M.-C. Chen, J. Huang, J.-M. O’Bryan, A.M. Wijangco and F. Yu, Compatibility of θ 13 and the type I seesaw model with A 4 symmetry, JHEP 02 (2013) 021 [arXiv:1210.6982] [INSPIRE]. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE]. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE]. J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE]. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].