Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Bên tối của θ 13, δ CP, leptogenesis và lạm phát trong cơ chế seesaw loại I
Tóm tắt
Trong bối cảnh cơ chế seesaw loại I, có một sự thật đã được biết đến rằng θ 13 bằng không và leptogenesis không thể được thực hiện nếu tồn tại một đối xứng hương vị dư thừa dẫn đến mô hình pha trộn neutrino Tri-Bimaximal. Chúng tôi đề xuất một khuôn khổ đơn giản, trong đó các hạt bổ sung, không bảo toàn dưới một đối xứng Z 2, phá vỡ đối xứng hương vị dư thừa và hạt nhẹ nhất trong số các hạt lạ Z 2 sẽ là ứng cử viên cho vật chất tối. Kết quả là, θ 13 không bằng không, δ CP, leptogenesis và mật độ vật chất tối đúng có thể được đáp ứng. Mặt khác, một số vô hướng Z 2 có thể đóng vai trò như inflaton với khối lượng 1013 GeV được thúc đẩy bởi các kết quả gần đây của BICEP2. Điều đáng chú ý là mô hình có thể “tạo ra” δ CP ≃ −π/2, được ưa chuộng bởi thí nghiệm T2K trong phổ khối lượng neutrino phân cấp bình thường.
Từ khóa
#seesaw loại I #θ 13 #δ CP #leptogenesis #vật chất tối #inflatonTài liệu tham khảo
P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D. Freedman and P. Van Niuenhuizen eds., North Holland, Amsterdam The Netherlands (1979), pg. 315 [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE].
T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979) [Conf. Proc. C 7902131 (1979) 95] [INSPIRE].
S.L. Glashow, The future of elementary particle physics, in 1979 Cargèse lectures in physics — quarks and leptons, M. Lévy et al. eds., Plenum, New York U.S.A. (1980), pg. 707 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].
Z.-Z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].
P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].
P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE].
P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [INSPIRE].
E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].
K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].
E. Ma, Tri-bimaximal neutrino mixing from a supersymmetric model with A 4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [INSPIRE].
G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].
S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].
Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [INSPIRE].
M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE].
C. Hagedorn, M. Lindner and R.N. Mohapatra, S 4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE].
G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S 4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE].
F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S 4 -based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].
P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].
P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and proton decay in a minimal SO(10) × S 4 model of flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE].
M.-C. Chen and K.T. Mahanthappa, CKM and tri-bimaximal MNS matrices in a SU(5) ×(d) T model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [INSPIRE].
M.-C. Chen and K.T. Mahanthappa, Group theoretical origin of CP-violation, Phys. Lett. B 681 (2009) 444 [arXiv:0904.1721] [INSPIRE].
A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5) × T′ unified model of flavour with large θ 13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].
DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-bimaximal lepton mixing and leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [INSPIRE].
E.E. Jenkins and A.V. Manohar, Tri-bimaximal mixing, leptogenesis and θ 13, Phys. Lett. B 668 (2008) 210 [arXiv:0807.4176] [INSPIRE].
E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [INSPIRE].
C. Hagedorn, E. Molinaro and S.T. Petcov, Majorana phases and leptogenesis in see-saw models with A 4 symmetry, JHEP 09 (2009) 115 [arXiv:0908.0240] [INSPIRE].
R.G. Felipe and H. Serodio, Constraints on leptogenesis from a symmetry viewpoint, Phys. Rev. D 81 (2010) 053008 [arXiv:0908.2947] [INSPIRE].
J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
C.I. Low and R.R. Volkas, Tri-bimaximal mixing, discrete family symmetries and a conjecture connecting the quark and lepton mixing matrices, Phys. Rev. D 68 (2003) 033007 [hep-ph/0305243] [INSPIRE].
S. Choubey, S.F. King and M. Mitra, On the vanishing of the CP asymmetry in leptogenesis due to form dominance, Phys. Rev. D 82 (2010) 033002 [arXiv:1004.3756] [INSPIRE].
BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
J. March-Russell, C. McCabe and M. McCullough, Neutrino-flavoured sneutrino dark matter, JHEP 03 (2010) 108 [arXiv:0911.4489] [INSPIRE].
B. Batell, J. Pradler and M. Spannowsky, Dark matter from minimal flavor violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].
P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored dark matter and its implications for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].
J. Kile and A. Soni, Flavored dark matter in direct detection experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE].
J.F. Kamenik and J. Zupan, Discovering dark matter through flavor violation at the LHC, Phys. Rev. D 84 (2011) 111502 [arXiv:1107.0623] [INSPIRE].
B. Batell, T. Lin and L.-T. Wang, Flavored dark matter and R-parity violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE].
A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].
L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].
J. Kile, Flavored dark matter: a review, Mod. Phys. Lett. A 28 (2013) 1330031 [arXiv:1308.0584] [INSPIRE].
T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].
M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].
M.S. Boucenna et al., Phenomenology of dark matter from A 4 flavor symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE].
Y.H. Ahn and H. Okada, Non-zero θ 13 linking to dark matter from non-Abelian discrete flavor model in radiative seesaw, Phys. Rev. D 85 (2012) 073010 [arXiv:1201.4436] [INSPIRE].
E. Ma, A. Natale and A. Rashed, Scotogenic A 4 neutrino model for nonzero θ 13 and large δ CP , Int. J. Mod. Phys. A 27 (2012) 1250134 [arXiv:1206.1570] [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
T2K collaboration, K. Abe et al., Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam, Phys. Rev. Lett. 111 (2013) 211803 [arXiv:1308.0465] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
J.A. Acosta, A. Aranda, M.A. Buen-Abad and A.D. Rojas, Non-diagonal charged lepton mass matrix and non-zero θ 13, Phys. Lett. B 718 (2013) 1413 [arXiv:1207.6093] [INSPIRE].
J.A. Acosta, A. Aranda and J. Virrueta, CP violating phase from charged-lepton mixing, JHEP 04 (2014) 134 [arXiv:1402.0754] [INSPIRE].
J. Kile, M.J. Pérez, P. Ramond and J. Zhang, θ 13 and the flavor ring, Phys. Rev. D 90 (2014) 013004 [arXiv:1403.6136] [INSPIRE].
U. Seljak, A. Slosar and P. McDonald, Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints, JCAP 10 (2006) 014 [astro-ph/0604335] [INSPIRE].
S. Joudaki, Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces, Phys. Rev. D 87 (2013) 083523 [arXiv:1202.0005] [INSPIRE].
J.-Q. Xia et al., Constraints on massive neutrinos from the CFHTLS angular power spectrum, JCAP 06 (2012) 010 [arXiv:1203.5105] [INSPIRE].
S. Riemer-Sorensen, D. Parkinson, T.M. Davis and C. Blake, Simultaneous constraints on the number and mass of relativistic species, Astrophys. J. 763 (2013) 89 [arXiv:1210.2131] [INSPIRE].
G.-B. Zhao et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample, Mon. Not. Roy. Astron. Soc. 436 (2013) 2038 [arXiv:1211.3741] [INSPIRE].
S. Riemer-Sørensen, D. Parkinson and T.M. Davis, Combining Planck with large scale structure gives strong neutrino mass constraint, arXiv:1306.4153 [INSPIRE].
A. de Gouvêa and J. Jenkins, The physical range of Majorana neutrino mixing parameters, Phys. Rev. D 78 (2008) 053003 [arXiv:0804.3627] [INSPIRE].
A. de Gouvêa, W.-C. Huang and S. Shalgar, Parameterizing Majorana neutrino couplings in the Higgs sector, Phys. Rev. D 84 (2011) 035011 [arXiv:1007.3664] [INSPIRE].
E. Ma, The all purpose neutrino mass matrix, Phys. Rev. D 66 (2002) 117301 [hep-ph/0207352] [INSPIRE].
J. Liao, D. Marfatia and K. Whisnant, Perturbations to μ-τ symmetry in neutrino mixing, Phys. Rev. D 87 (2013) 013003 [arXiv:1205.6860] [INSPIRE].
M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [INSPIRE].
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
M. Tavakoli, I. Cholis, C. Evoli and P. Ullio, Constraints on dark matter annihilations from diffuse gamma-ray emission in the galaxy, JCAP 01 (2014) 017 [arXiv:1308.4135] [INSPIRE].
H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].
S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].
G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].
S.Y. Khlebnikov and M.E. Shaposhnikov, The statistical theory of anomalous Fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].
J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].
F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].
P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].
P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev. D 37 (1988) 1020 [INSPIRE].
W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
M.-C. Chen, TASI 2006 lectures on leptogenesis, hep-ph/0703087 [INSPIRE].
R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].
P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].
O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [INSPIRE].
S. Blanchet and P. Di Bari, Leptogenesis beyond the limit of hierarchical heavy neutrino masses, JCAP 06 (2006) 023 [hep-ph/0603107] [INSPIRE].
A. Strumia, Baryogenesis via leptogenesis, hep-ph/0608347 [INSPIRE].
G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N 2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [INSPIRE].
D. Aristizabal Sierra, C.S. Fong, E. Nardi and E. Peinado, Cloistered baryogenesis, JCAP 02 (2014) 013 [arXiv:1309.4770] [INSPIRE].
J. Racker, Mass bounds for baryogenesis from particle decays and the inert doublet model, JCAP 03 (2014) 025 [arXiv:1308.1840] [INSPIRE].
A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].
A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].
A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].
W.H. Kinney, TASI lectures on inflation, arXiv:0902.1529 [INSPIRE].
D. Baumann, TASI lectures on inflation, arXiv:0907.5424 [INSPIRE].
J. Martin, C. Ringeval and V. Vennin, Encyclopædia inflationaris, Phys. Dark Univ. (2014) [arXiv:1303.3787] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
M.-C. Chen, J. Huang, J.-M. O’Bryan, A.M. Wijangco and F. Yu, Compatibility of θ 13 and the type I seesaw model with A 4 symmetry, JHEP 02 (2013) 021 [arXiv:1210.6982] [INSPIRE].
K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].
L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].