Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tình trạng hiện tại của việc ghép tế bào gốc huyết học tự thân trong điều trị bệnh xơ cứng teo cơ nhiều tâm trạng
Tóm tắt
Ghép tế bào gốc huyết học tự thân (aHSCT) đang ngày càng được ưa chuộng như một lựa chọn điều trị quý giá cho bệnh nhân bị xơ cứng teo cơ nhiều tâm trạng nặng (MS), đặc biệt là dạng tái phát - thuyên giảm. Chúng tôi mô tả tài liệu hiện tại liên quan đến các thử nghiệm lâm sàng, các nghiên cứu quan sát và hồi cứu, cũng như sự tái tạo miễn dịch sau khi ghép, với trọng tâm là các phác đồ chuẩn bị trước khi ghép. Cơ sở bằng chứng chủ yếu bao gồm các thử nghiệm lâm sàng không ngẫu nhiên, không kiểm soát hoặc dữ liệu từ các nhóm hồi cứu hoặc quan sát, tức là rất ít thử nghiệm ngẫu nhiên hoặc có kiểm soát. Thường thì, các phác đồ chuẩn bị cường độ trung bình được sử dụng, với các kết quả hứa hẹn từ cả chiến lược tiêu diệt tủy và tiêu diệt bạch cầu, cũng như từ các phác đồ có cường độ thấp và cao. Hiệu quả của việc ghép, có khả năng là do sự tái tạo miễn dịch và phục hồi sự dung nạp miễn dịch, do đó, không hoàn toàn phụ thuộc vào cường độ của phác đồ chuẩn bị. Tuy nhiên, phác đồ chuẩn bị có thể ảnh hưởng đến phản ứng miễn dịch đối với việc ghép. Sự đa dạng của các phác đồ chuẩn bị trong các nghiên cứu cản trở việc tổng hợp các bài báo đánh giá sự thay đổi của hệ miễn dịch sau aHSCT. Các yếu tố liên quan đến kết quả tốt hơn bao gồm điểm số Kurtzke Expand Disability Status Scale thấp hơn, dạng MS tái phát - thuyên giảm, tuổi còn trẻ và thời gian bệnh ngắn hơn ở thời điểm khởi đầu, điều này hỗ trợ hướng dẫn về lựa chọn bệnh nhân như được đề xuất bởi Hiệp hội Châu Âu về Ghép Tủy Xương. Thú vị thay, các nghiên cứu đã mô tả kết quả hứa hẹn cho bệnh nhân mắc MS tiến triển thứ phát, có thể đáng xem xét khi cân nhắc các lựa chọn điều trị cho bệnh nhân có bệnh tiến triển và hoạt động. Đáng lưu ý, một tỷ lệ đáng kể bệnh nhân phát triển bệnh tự miễn sau khi ghép, với các phác đồ có chứa alemtuzumab liên quan đến tỷ lệ mắc cao nhất.
Từ khóa
#ghép tế bào gốc huyết học tự thân #xơ cứng teo cơ #tái phát-thuyên giảm #phác đồ chuẩn bị #hệ miễn dịchTài liệu tham khảo
International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. https://doi.org/10.1038/nature10251
International Multiple Sclerosis Genetics C, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–862. https://doi.org/10.1056/NEJMoa073493
Marrie RA (2004) Environmental risk factors in multiple sclerosis aetiology. Lancet Neurol 3(12):709–718. https://doi.org/10.1016/S1474-4422(04)00933-0
Compston A, Coles A (2002) Multiple sclerosis. Lancet 359(9313):1221–1231. https://doi.org/10.1016/S0140-6736(02)08220-X
Guerrero BL, Sicotte NL (2020) Microglia in multiple sclerosis: friend or foe? Front Immunol 11:374. https://doi.org/10.3389/fimmu.2020.00374
Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558. https://doi.org/10.1038/nri3871
Ontaneda D, Fox RJ, Chataway J (2015) Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol 14(2):208–223. https://doi.org/10.1016/S1474-4422(14)70264-9
Huntemann N, Rolfes L, Pawlitzki M, Ruck T, Pfeuffer S, Wiendl H et al (2021) Failed, interrupted, or inconclusive trials on neuroprotective and neuroregenerative treatment strategies in multiple sclerosis: update 2015–2020. Drugs 81(9):1031–1063. https://doi.org/10.1007/s40265-021-01526-w
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/WNL.0000000000000560
Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S et al (2018) Multiple sclerosis. Nat Rev Dis Primers 4(1):43. https://doi.org/10.1038/s41572-018-0041-4
Kavrochorianou N, Markogiannaki M, Haralambous S (2016) IFN-beta differentially regulates the function of T cell subsets in MS and EAE. Cytokine Growth Factor Rev 30:47–54. https://doi.org/10.1016/j.cytogfr.2016.03.013
Stinissen P, Raus J, Zhang J (1997) Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit Rev Immunol 17(1):33–75. https://doi.org/10.1615/critrevimmunol.v17.i1.20
Martin-Saavedra FM, Gonzalez-Garcia C, Bravo B, Ballester S (2008) Beta interferon restricts the inflammatory potential of CD4+ cells through the boost of the Th2 phenotype, the inhibition of Th17 response and the prevalence of naturally occurring T regulatory cells. Mol Immunol 45(15):4008–4019. https://doi.org/10.1016/j.molimm.2008.06.006
Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC et al (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25(6):1170–1181. https://doi.org/10.1016/j.bbi.2011.03.007
Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124(1):132–143. https://doi.org/10.1016/0008-8749(89)90117-2
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L (2020) T helper cells: the modulators of inflammation in multiple sclerosis. Cells. https://doi.org/10.3390/cells9020482
Huseby ES, Huseby PG, Shah S, Smith R, Stadinski BD (2012) Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front Immunol 3:64. https://doi.org/10.3389/fimmu.2012.00064
Zozulya AL, Wiendl H (2008) The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 4(7):384–398. https://doi.org/10.1038/ncpneuro0832
Ruck T, Bock S, Pfeuffer S, Schroeter CB, Cengiz D, Marciniak P et al (2022) K2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Res 32(1):72–88. https://doi.org/10.1038/s41422-021-00580-z
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X et al (2021) Role of B cells in multiple sclerosis and related disorders. Ann Neurol 89(1):13–23. https://doi.org/10.1002/ana.25927
Bittner S, Ruck T, Wiendl H, Grauer OM, Meuth SG (2017) Targeting B cells in relapsing-remitting multiple sclerosis: from pathophysiology to optimal clinical management. Ther Adv Neurol Disord 10(1):51–66. https://doi.org/10.1177/1756285616666741
Mimpen M, Smolders J, Hupperts R, Damoiseaux J (2020) Natural killer cells in multiple sclerosis: a review. Immunol Lett 222:1–11. https://doi.org/10.1016/j.imlet.2020.02.012
Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J et al (2014) Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 13(7):657–665. https://doi.org/10.1016/S1474-4422(14)70068-7
Khan O, Rieckmann P, Boyko A, Selmaj K, Ashtamker N, Davis MD et al (2017) Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. Mult Scler 23(6):818–829. https://doi.org/10.1177/1352458516664033
Wolinsky JS, Borresen TE, Dietrich DW, Wynn D, Sidi Y, Steinerman JR et al (2015) GLACIER: an open-label, randomized, multicenter study to assess the safety and tolerability of glatiramer acetate 40 mg three-times weekly versus 20 mg daily in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 4(4):370–376. https://doi.org/10.1016/j.msard.2015.06.005
Palace J, Duddy M, Lawton M, Bregenzer T, Zhu F, Boggild M et al (2019) Assessing the long-term effectiveness of interferon-beta and glatiramer acetate in multiple sclerosis: final 10-year results from the UK multiple sclerosis risk-sharing scheme. J Neurol Neurosurg Psychiatry 90(3):251–260. https://doi.org/10.1136/jnnp-2018-318360
Lunemann JD, Ruck T, Muraro PA, Bar-Or A, Wiendl H (2020) Author Correction: Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nat Rev Neurol 16(2):125. https://doi.org/10.1038/s41582-020-0310-1
Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A et al (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187. https://doi.org/10.1001/jama.2018.20588
Cree BAC, Mares J, Hartung HP (2019) Current therapeutic landscape in multiple sclerosis: an evolving treatment paradigm. Curr Opin Neurol 32(3):365–377. https://doi.org/10.1097/WCO.0000000000000700
Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F et al (2019) Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol 76(5):536–541. https://doi.org/10.1001/jamaneurol.2018.4905
Li H, Hu F, Zhang Y, Li K (2020) Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol 267(12):3489–3498. https://doi.org/10.1007/s00415-019-09395-w
Hartung HP, Meuth SG, Thompson AJ (2021) Paradigm shifts: early initiation of high-efficacy disease-modifying treatment in multiple sclerosis. Mult Scler 27(10):1473–1476. https://doi.org/10.1177/13524585211033190
University of California SFMSET, Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S et al (2019) Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 85(5):653–666. https://doi.org/10.1002/ana.25463
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H et al (2019) Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol 76(12):1474–1483. https://doi.org/10.1001/jamaneurol.2019.2399
Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R (2017) Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol 13(7):391–405. https://doi.org/10.1038/nrneurol.2017.81
Visweswaran M, Hendrawan K, Massey JC, Khoo ML, Ford CD, Zaunders JJ et al (2022) Sustained immunotolerance in multiple sclerosis after stem cell transplant. Ann Clin Transl Neurol 9(2):206–220. https://doi.org/10.1002/acn3.51510 (Epub 2022 Feb 1. PMID: 35106961; PMCID: PMC8862434)
Juric MK, Ghimire S, Ogonek J, Weissinger EM, Holler E, van Rood JJ et al (2016) Milestones of hematopoietic stem cell transplantation—from first human studies to current developments. Front Immunol. https://doi.org/10.3389/fimmu.2016.00470
Sharrack B, Saccardi R, Alexander T, Badoglio M, Burman J, Farge D et al (2020) Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant 55(2):283–306. https://doi.org/10.1038/s41409-019-0684-0
Burt RK, Burns W, Hess A (1995) Bone marrow transplantation for multiple sclerosis. Bone Marrow Transplant 16(1):1–6
Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V et al (1997) Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant 20(8):631–638. https://doi.org/10.1038/sj.bmt.1700944
Burt RK, Traynor AE, Cohen B, Karlin KH, Davis FA, Stefoski D et al (1998) T cell-depleted autologous hematopoietic stem cell transplantation for multiple sclerosis: report on the first three patients. Bone Marrow Transplant 21(6):537–541. https://doi.org/10.1038/sj.bmt.1701129
Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park MS et al (2003) High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 102(7):2364–2372. https://doi.org/10.1182/blood-2002-12-3908
Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y et al (2003) Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood 102(7):2373–2378. https://doi.org/10.1182/blood-2003-03-0877
Samijn JP, te Boekhorst PA, Mondria T, van Doorn PA, Flach HZ, van der Meche FG et al (2006) Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry 77(1):46–50. https://doi.org/10.1136/jnnp.2005.063883
Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A et al (2016) Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet 388(10044):576–585. https://doi.org/10.1016/S0140-6736(16)30169-6
Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC et al (2017) High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology 88(9):842–852. https://doi.org/10.1212/WNL.0000000000003660
Moore JJ, Massey JC, Ford CD, Khoo ML, Zaunders JJ, Hendrawan K et al (2019) Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J Neurol Neurosurg Psychiatry 90(5):514–521. https://doi.org/10.1136/jnnp-2018-319446
Shevchenko JL, Kuznetsov AN, Ionova TI, Melnichenko VY, Fedorenko DA, Kartashov AV et al (2012) Autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis. Exp Hematol 40(11):892–898. https://doi.org/10.1016/j.exphem.2012.07.003
Saiz A, Blanco Y, Carreras E, Berenguer J, Rovira M, Pujol T et al (2004) Clinical and MRI outcome after autologous hematopoietic stem cell transplantation in MS. Neurology 62(2):282–284. https://doi.org/10.1212/wnl.62.2.282
Saccardi R, Mancardi GL, Solari A, Bosi A, Bruzzi P, Di Bartolomeo P et al (2005) Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 105(6):2601–2607. https://doi.org/10.1182/blood-2004-08-3205
Capello E, Saccardi R, Murialdo A, Gualandi F, Pagliai F, Bacigalupo A et al (2005) Intense immunosuppression followed by autologous stem cell transplantation in severe multiple sclerosis. Neurol Sci 26(Suppl 4):S200–S203. https://doi.org/10.1007/s10072-005-0514-6
Hamerschlak N, Rodrigues M, Moraes DA, Oliveira MC, Stracieri AB, Pieroni F et al (2010) Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplant 45(2):239–248. https://doi.org/10.1038/bmt.2009.127
Kozak T, Havrdova E, Pit’ha J, Gregora E, Pytlik R, Maaloufova J et al (2001) Immunoablative therapy with autologous stem cell transplantation in the treatment of poor risk multiple sclerosis. Transplant Proc 33(3):2179–2181. https://doi.org/10.1016/s0041-1345(01)01933-9
Mancardi GL, Saccardi R, Filippi M, Gualandi F, Murialdo A, Inglese M et al (2001) Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology 57(1):62–68. https://doi.org/10.1212/wnl.57.1.62
Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E et al (2015) Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84(10):981–988. https://doi.org/10.1212/WNL.0000000000001329
Mariottini A, Innocenti C, Forci B, Magnani E, Mechi C, Barilaro A et al (2019) Safety and efficacy of autologous hematopoietic stem-cell transplantation following natalizumab discontinuation in aggressive multiple sclerosis. Eur J Neurol 26(4):624–630. https://doi.org/10.1111/ene.13866
Su L, Xu J, Ji BX, Wan SG, Lu CY, Dong HQ et al (2006) Autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Int J Hematol 84(3):276–281. https://doi.org/10.1532/IJH97.A10516
Xu J, Ji BX, Su L, Dong HQ, Sun XJ, Liu CY (2006) Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis. Chin Med J (Engl) 119(22):1851–1855
Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G et al (2009) Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 8(3):244–253. https://doi.org/10.1016/S1474-4422(09)70017-1
Curro D, Vuolo L, Gualandi F, Bacigalupo A, Roccatagliata L, Capello E et al (2015) Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study. Mult Scler 21(11):1423–1430. https://doi.org/10.1177/1352458514564484
Giedraitiene N, Kizlaitiene R, Peceliunas V, Griskevicius L, Kaubrys G (2020) Selective cognitive dysfunction and physical disability improvement after autologous hematopoietic stem cell transplantation in highly active multiple sclerosis. Sci Rep 10(1):21286. https://doi.org/10.1038/s41598-020-78160-1
Cull G, Hall D, Fabis-Pedrini MJ, Carroll WM, Forster L, Robins F et al (2017) Lymphocyte reconstitution following autologous stem cell transplantation for progressive MS. Mult Scler J Exp Transl Clin 3(1):2055217317700167. https://doi.org/10.1177/2055217317700167
Dayama A, Bhargava R, Kurmi SR, Jain S, Dua V (2020) Autologous stem cell transplant in adult multiple sclerosis patients: a study from North India. Neurol India 68(2):454–457. https://doi.org/10.4103/0028-3886.284385
de Paula ASA, Malmegrim KC, Panepucci RA, Brum DS, Barreira AA, Carlos-Dos-Santos A et al (2015) Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin Sci (Lond) 128(2):111–120. https://doi.org/10.1042/CS20140095
Burt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC et al (2019) Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA 321(2):165–174. https://doi.org/10.1001/jama.2018.18743
Fassas A, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E et al (2002) Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol 249(8):1088–1097. https://doi.org/10.1007/s00415-002-0800-7
Fassas A, Kimiskidis VK, Sakellari I, Kapinas K, Anagnostopoulos A, Tsimourtou V et al (2011) Long-term results of stem cell transplantation for MS: a single-center experience. Neurology 76(12):1066–1070. https://doi.org/10.1212/WNL.0b013e318211c537
Ni XS, Ouyang J, Zhu WH, Wang C, Chen B (2006) Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three year of follow up in 21 patients. Clin Transplant 20(4):485–489. https://doi.org/10.1111/j.1399-0012.2006.00510.x
Casanova B, Jarque I, Gascon F, Hernandez-Boluda JC, Perez-Miralles F, de la Rubia J et al (2017) Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis. Neurol Sci 38(7):1213–1221. https://doi.org/10.1007/s10072-017-2933-6
Haussler V, Ufer F, Pottgen J, Wolschke C, Friese MA, Kroger N et al (2021) aHSCT is superior to alemtuzumab in maintaining NEDA and improving cognition in multiple sclerosis. Ann Clin Transl Neurol 8(6):1269–1278. https://doi.org/10.1002/acn3.51366
Mariottini A, Filippini S, Innocenti C, Forci B, Mechi C, Barilaro A et al (2021) Impact of autologous haematopoietic stem cell transplantation on disability and brain atrophy in secondary progressive multiple sclerosis. Mult Scler 27(1):61–70. https://doi.org/10.1177/1352458520902392
Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP et al (2012) Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler 18(6):835–842. https://doi.org/10.1177/1352458511429320
Krasulova E, Trneny M, Kozak T, Vackova B, Pohlreich D, Kemlink D et al (2010) High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Mult Scler 16(6):685–693. https://doi.org/10.1177/1352458510364538
Mariottini A, Bulgarini G, Forci B, Innocenti C, Mealli F, Mattei A et al (2022) Autologous haematopoietic stem cell transplantation versus low-dose immunosuppression in secondary-progressive multiple sclerosis. Eur J Neurol. https://doi.org/10.1111/ene.15280 (Epub ahead of print.PMID: 35146841)
Comini-Frota ER, Marques BCC, Torres C, Cohen KMS, Miranda EC (2019) Nine-year follow up after hematopoietic stem cell transplantation in five multiple sclerosis patients. Arq Neuropsiquiatr 77(8):531–535. https://doi.org/10.1590/0004-282X20190097
Zhukovsky C, Sandgren S, Silfverberg T, Einarsdottir S, Tolf A, Landtblom AM et al (2021) Autologous haematopoietic stem cell transplantation compared with alemtuzumab for relapsing-remitting multiple sclerosis: an observational study. J Neurol Neurosurg Psychiatry 92(2):189–194. https://doi.org/10.1136/jnnp-2020-323992
Kvistad SAS, Lehmann AK, Trovik LH, Kristoffersen EK, Bo L, Myhr KM et al (2020) Safety and efficacy of autologous hematopoietic stem cell transplantation for multiple sclerosis in Norway. Mult Scler 26(14):1889–1897. https://doi.org/10.1177/1352458519893926
Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K et al (2015) Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA 313(3):275–284. https://doi.org/10.1001/jama.2014.17986
Burt RK, Han X, Quigley K, Helenowski IB, Balabanov R (2021) Real-world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J Neurol. https://doi.org/10.1007/s00415-021-10820-2
Boffa G, Massacesi L, Inglese M, Mariottini A, Capobianco M, Lucia M et al (2021) Long-term clinical outcomes of hematopoietic stem cell transplantation in multiple sclerosis. Neurology. https://doi.org/10.1212/WNL.0000000000011461
Frau J, Carai M, Coghe G, Fenu G, Lorefice L, La Nasa G et al (2018) Long-term follow-up more than 10 years after HSCT: a monocentric experience. J Neurol 265(2):410–416. https://doi.org/10.1007/s00415-017-8718-2
Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A et al (2017) Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol 74(4):459–469. https://doi.org/10.1001/jamaneurol.2016.5867
Das J, Snowden JA, Burman J, Freedman MS, Atkins H, Bowman M et al (2021) Autologous haematopoietic stem cell transplantation as a first-line disease-modifying therapy in patients with “aggressive” multiple sclerosis. Mult Scler 27(8):1198–1204. https://doi.org/10.1177/1352458520985238
Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P et al (2014) Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry 85(10):1116–1121. https://doi.org/10.1136/jnnp-2013-307207
Tolf A, Fagius J, Carlson K, Akerfeldt T, Granberg T, Larsson EM et al (2019) Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand 140(5):320–327. https://doi.org/10.1111/ane.13147
Nicholas RS, Rhone EE, Mariottini A, Silber E, Malik O, Singh-Curry V et al (2021) Autologous hematopoietic stem cell transplantation in active multiple sclerosis: a real-world case series. Neurology 97(9):e890–e901. https://doi.org/10.1212/WNL.0000000000012449
Mancardi G, Saccardi R (2008) Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol 7(7):626–636. https://doi.org/10.1016/S1474-4422(08)70138-8
Neurotoxicity of chemotherapy. Nat Clin Pract Neurol. 2007;3(3):125. https://doi.org/10.1038/ncpneuro0418
Amato AA, Dumitru D (2002) Chapter 23—acquired neuropathies. In: Dumitru D, Amato AA, Zwarts M (eds) Elextrodiagnostic medicine, 2nd edn. Hanley & Belfus, Boston, pp 937–1041
Baker WJ, Royer GL Jr, Weiss RB (1991) Cytarabine and neurologic toxicity. J Clin Oncol 9(4):679–693. https://doi.org/10.1200/JCO.1991.9.4.679
Najera JE, Sudhakar T, Bashir Q, Shah N, Champlin RE, Qazilbash MH et al (2012) Neurotoxicity after high-dose melphalan. J Clin Oncol 30(15 suppl):6546. https://doi.org/10.1200/jco.2012.30.15_suppl.6546
Daikeler T, Tichelli A, Passweg J (2012) Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr Res 71(4 Pt 2):439–444. https://doi.org/10.1038/pr.2011.57
Cencioni MT, Genchi A, Brittain G, de Silva TI, Sharrack B, Snowden JA et al (2021) Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis: a review on behalf of the EBMT autoimmune diseases working party. Front Immunol 12:813957. https://doi.org/10.3389/fimmu.2021.813957
Goverman JM (2011) Immune tolerance in multiple sclerosis. Immunol Rev 241(1):228–240. https://doi.org/10.1111/j.1600-065X.2011.01016.x
Goverman JM, Regulatory T (2021) Cells in multiple sclerosis. N Engl J Med 384(6):578–580. https://doi.org/10.1056/NEJMcibr2033544
Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA et al (2015) Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant 50(3):380–389. https://doi.org/10.1038/bmt.2014.277
Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL et al (2013) Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136(Pt 9):2888–2903. https://doi.org/10.1093/brain/awt182
Jaime-Perez JC, Turrubiates-Hernandez GA, Lopez-Silva LJ, Salazar-Riojas R, Gomez-Almaguer D (2020) Early changes in IL-21, IL-22, CCL2, and CCL4 serum cytokines after outpatient autologous transplantation for multiple sclerosis: a proof of concept study. Clin Transplant 34(12):e14114. https://doi.org/10.1111/ctr.14114
Darlington PJ, Stopnicki B, Touil T, Doucet JS, Fawaz L, Roberts ME et al (2018) Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front Immunol 9:834. https://doi.org/10.3389/fimmu.2018.00834
Larochelle C, Wasser B, Jamann H, Loffel JT, Cui QL, Tastet O et al (2021) Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2025813118
Harris KM, Lim N, Lindau P, Robins H, Griffith LM, Nash RA et al (2020) Extensive intrathecal T cell renewal following hematopoietic transplantation for multiple sclerosis. JCI Insight. https://doi.org/10.1172/jci.insight.127655
Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R et al (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201(5):805–816. https://doi.org/10.1084/jem.20041679
Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C et al (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest 115(4):930–939. https://doi.org/10.1172/JCI22492
Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C et al (2014) T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 124(3):1168–1172. https://doi.org/10.1172/JCI71691
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM (2020) Evaluating thymic function after human hematopoietic stem cell transplantation in the personalized medicine era. Front Immunol 11:1341. https://doi.org/10.3389/fimmu.2020.01341
Amoriello R, Greiff V, Aldinucci A, Bonechi E, Carnasciali A, Peruzzi B et al (2020) The TCR repertoire reconstitution in multiple sclerosis: comparing one-shot and continuous immunosuppressive therapies. Front Immunol 11:559. https://doi.org/10.3389/fimmu.2020.00559
Chen JT, Collins DL, Atkins HL, Freedman MS, Galal A, Arnold DL et al (2006) Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology 66(12):1935–1937. https://doi.org/10.1212/01.wnl.0000219816.44094.f8
Inglese M, Mancardi GL, Pagani E, Rocca MA, Murialdo A, Saccardi R et al (2004) Brain tissue loss occurs after suppression of enhancement in patients with multiple sclerosis treated with autologous haematopoietic stem cell transplantation. J Neurol Neurosurg Psychiatry 75(4):643–644
Rocca MA, Mondria T, Valsasina P, Sormani MP, Flach ZH, Te Boekhorst PA et al (2007) A three-year study of brain atrophy after autologous hematopoietic stem cell transplantation in rapidly evolving secondary progressive multiple sclerosis. AJNR Am J Neuroradiol 28(9):1659–1661. https://doi.org/10.3174/ajnr.A0644
Mariottini A, Marchi L, Innocenti C, Di Cristinzi M, Pasca M, Filippini S et al (2022) Intermediate-intensity autologous hematopoietic stem cell transplantation reduces serum neurofilament light chains and brain atrophy in aggressive multiple sclerosis. Front Neurol 13:820256. https://doi.org/10.3389/fneur.2022.820256 (PMID: 35280289; PMCID: PMC8907141)
Meca-Lallana V, Berenguer-Ruiz L, Carreres-Polo J, Eichau-Madueno S, Ferrer-Lozano J, Forero L et al (2021) Deciphering multiple sclerosis progression. Front Neurol 12:608491. https://doi.org/10.3389/fneur.2021.608491
Arruda LCM, de Azevedo JTC, de Oliveira GLV, Scortegagna GT, Rodrigues ES, Palma PVB et al (2016) Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol 169:47–57. https://doi.org/10.1016/j.clim.2016.06.005