The consistency and the general common solution to some quaternion matrix equations
Tóm tắt
In this paper, we establish some necessary and sufficient conditions for the solvability to a system of five quaternion matrix equations in terms of the Moore–Penrose inverse and the rank of a matrix, and give an expression of the general solution to the system when it is consistent. As an application, we investigate an
$$\eta $$
-Hermicity solution of a system. Moreover, we present a numerical example to illustrate the main results of this paper.
Tài liệu tham khảo
Assefa, D., Mansinha, L., Tiampo, K.F.: Local quaternion Fourier transform and color image texture analysis. Signal Process. 90, 1825–1835 (2010)
Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Application. Wiley, New York (1974)
Bihan, N.L., Mars, J.: Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process. 84, 1177–1199 (2004)
Castelan, E.B., da Silva, V.G.: On the solution of a Sylvester equation appearing in descriptor systems control theory. Syst. Control Lett. 54, 109–117 (2005)
Chen, X.Y., Wang, Q.W.: The \(\eta \)-(anti-)Hermitian solution to a constrained Sylvester-type generalized commutative quaternion matrix equation. Banach J. Math. Anal. 17, No. 3, Paper No. 40 (2023). https://doi.org/10.1007/s43037-023-00262-5
Dmytryshyn, A., Kagstrom, B.: Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 36, 580–593 (2015)
Fan, X., Li, Y., Sun, J., Zhao, J.: Solving quaternion linear system \(AXB= E\) based on semi-tensor product of quaternion matrices. Banach J. Math. Anal. 17(2), 25 (2023)
He, Z.H., Wang, Q.W.: The general solutions to some systems of matrix equations. Linear Multilinear Algebra. 63(10), 2017–2032 (2015)
He, Z.H., Wang, Q.W.: The \(\eta \)-bihermitian solution to a system of real quaternion matrix equations. Linear Multilinear Algebra. 62, 1509–1528 (2014)
He, Z.H., Wang, Q.W., Zhang, Y.: Simultaneous decomposition of quaternion matrices involving \(\eta \)-Hermicity with applications. Appl. Math. Comput. 298, 13–35 (2017)
He, Z.H., Chen, C., Wang, X.X.: A simultaneous decomposition for three quaternion tensors with applications in color video signal processing. Anal. Appl. Singap. 19(3), 529–549 (2021)
Huang, G.X., Yin, F., Guo, K.: An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation \(AXB = C\). J. Comput. Appl. Math. 212, 231–244 (2008)
Kyrchei, I.: Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl. 438(1), 136–152 (2013)
Kyrchei, I.: Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations. Appl. Math. Comput. 238, 193–207 (2014)
Kyrchei, I.: Determinantal representations of solutions to systems of two-sided quaternion matrix equations. Linear Multilinear Algebra 69(4), 648–672 (2021)
Li, F.L., Hu, X.Y., Zhang, L.: The generalized reflexive solution for a class of matrix equations \((AX = B, XC = D)\). Acta Math. Sci. 28(1), 185–193 (2008)
Liu, L.S., Wang, Q.W.: The reducible solution to a system of matrix equations over the Hamilton quaternion algebra. Filomat 37(9), 2731–2742 (2023)
Liu, L.S., Wang, Q.W., Chen, J.F., Xie, Y.Z.: An exact solution to a quaternion matrix equation with an application. Symmetry 14(2), 375 (2022)
Liu, L.S., Wang, Q.W., Mehany, M.S.: A Sylvester-type matrix equation over the Hamilton quaternions with an application. Mathematics 10(10), 1758 (2022)
Li, T., Wang, Q.W., Zhang, X.F.: A modified conjugate residual method and nearest Kronecker product preconditioner for the generalized coupled Sylvester tensor equations. Mathematics 10(10), 1730 (2022)
Li, T., Wang, Q.W., Zhang, X.F.: Gradient based iterative methods for solving symmetric tensor equations. Numer. Linear Algebra Appl. 29(2), e2414 (2022)
Liu, X.: The \(\eta \)-anti-Hermitian solution to some classic matrix equations. Appl. Math. Comput. 320, 264–270 (2018)
Liu, X., He, Z.H.: On the split quaternion matrix equation AX= B. Banach J. Math. Anal. 14(1), 228–248 (2020)
Liu, X., Zhang, Y.: Consistency of split quaternion matrix equations \(AX^{*}-XB=CY+D\) and \(X-AX^{*}B=CY+D\). Adv. Appl. Clifford Algebras 64, 1–20 (2019)
Marsaglia, G., Styan, G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2(3), 269–292 (1974)
Mehany, M.S., Wang, Q.W.: Three symmetrical systems of coupled Sylvester-like quaternion matrix equations. Symmetry 14(3), 550 (2022)
Nie, X.R., Wang, Q.W., Zhang, Y.: A system of matrix equations over the quaternion algebra with applications. Algebra Colloq. 24(2), 233–253 (2017)
Peng, Z.Y.: The centro-symmetric solutions of linear matrix equation \(AXB = C\) and its optimal approximation. Chin. J. Eng. Math. 6, 60–64 (2003)
Qi, L.Q., Luo, Z.Y., Wang, Q.W., Zhang, X.Z.: Quaternion matrix optimization: motivation and analysis. J. Optim. Theory Appl. 193(1–3), 621–648 (2022)
Ren, B.Y., Wang, Q.W., Chen, X.Y.: The \(\eta \)-anti-Hermitian solution to a system of constrained matrix equations over the generalized segre quaternion algebra. Symmetry 15(3), 592 (2023)
Took, C.C., Mandic, D.P.: Augmented second-order statistics of quaternion random signals. Signal Process. 91(2), 214–224 (2011)
Took, C.C., Mandic, D.P., Zhang, F.Z.: On the unitary diagonalisation of a special class of quaternion matrices. Appl. Math. Lett. 24(11), 1806–1809 (2011)
Villareal, E.R.L., Vargas, J.A.R., Hemerly, E.M.: Static output feedback stabilization using invariant subspaces and Sylvester equations. TEMA Tend. Mat. Apl. Comput. 10(1), 99–110 (2009)
Wang, Q.W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl. 384, 43–54 (2004)
Wang, Q.W.: A system of four matrix equations over von Neumann regular rings and its applications. Acta Math. Sin. 21(2), 323–334 (2005)
Wang, Q.W., He, Z.H., Zhang, Y.: Constrained two-side coupled Sylvester-type quaternion matrix equations. Automatica 101, 207–213 (2019)
Wang, Q.W., He, Z.H.: Some matrix equations with applications. Linear Multilinear Algebra 60(11–12), 1327–1353 (2012)
Wang, Q.W., Lv, R.Y., Zhang, Y.: The least-squares solution with the least norm to a system of tensor equations over the quaternion algebra. Linear Multilinear Algebra 70(10), 1942–1962 (2022)
Xie, L.M., Wang, Q.W.: A system of matrix equations over the commutative quaternion ring. Filomat 37(1), 97–106 (2023)
Xie, M.Y., Wang, Q.W.: The reducible solution to a quaternion tensor equation. Front. Math. China 15(5), 1047–1070 (2020)
Xie, M.Y., Wang, Q.W., He, Z.H., Saad, M.M.: A system of Sylvester-type quaternion matrix equations with ten variables. Acta Math. Sin. (Engl. Ser.) 38(8), 1399–1420 (2022)
Xu, Y.F., Wang, Q.W., Liu, L.S., Mehany, M.S.: A constrained system of matrix equations. Comput. Appl. Math. 41(4), 166 (2022)
Zhang, Y.N., Jiang, D.C., Wang, J.: A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 13(5), 1053–1063 (2002)