The chemopreventive effect of Ginkgo biloba and Silybum marianum extracts on hepatocarcinogenesis in rats

Cancer Cell International - Tập 11 - Trang 1-12 - 2011
Hala O El Mesallamy1, Nadia S Metwally2, Mahmoud S Soliman2, Kawkab A Ahmed3, Mai M Abdel Moaty2
1Faculty of Pharmacy, Biochemistry Department, Ain Shams University, Abbassia, Cairo, Egypt
2Therapeutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza, Egypt
3Faculty of Veterinary Medicine, Pathology Department, Cairo University, Giza, Egypt

Tóm tắt

This study was designed to evaluate the potential chemopreventive activities of Ginkgo biloba extract (EGb) and Silybum marianum extract (silymarin) against hepatocarcinogenesis induced by N-nitrosodiethylamine (NDEA) in rats. Rats were divided into 6 groups. Group 1 served as normal control rats. Group 2 animals were intragastrically administrated NDEA at a dose of 10 mg/kg five times a week for 12 weeks to induce hepatocellular carcinoma (HCC). Groups 3 and 4 animals were pretreated with silymarin and EGb respectively. Groups 5 and 6 animals were posttreated with silymarin and EGb respectively. The investigated parameters in serum are alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyltransferase (GGT) and vascular endothelial growth factor (VEGF). The investigated parameters in liver tissue are malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and comet assay parameters. In NDEA group, MDA level was elevated with subsequent decrease in GSH level and SOD, GPx and GR activities. In addition, NDEA group revealed a significant increase in serum ALT, AST and GGT activities and VEGF level. Furthermore, NDEA administrated animals showed a marked increase in comet assay parameters. These biochemical alterations induced by NDEA were confirmed by the histopathological examination of rat livers intoxicated with NDEA that showed an obvious cellular damage and well differentiated HCC. In contrast, silymarin+NDEA treated groups (3&5) and EGb+NDEA treated groups (4&6) showed a significant decrease in MDA level and a significant increase in GSH content and SOD, GPx and GR activities compared to NDEA group. Silymarin and EGb also beneficially down-regulated the increase in serum ALT, AST, GGT activities and VEGF level induced by NDEA. In addition, silymarin and EGb significantly decreased comet assay parameters. Histopathological examination of rat livers treated with either silymarin or EGb exhibited an improvement in the liver architecture compared to NDEA group. The obtained findings suggested that silymarin and EGb may have beneficial chemopreventive roles against hepatocarcinogenesis through their antioxidant, antiangiogenic and antigenotoxic activities.

Tài liệu tham khảo

World Health Organization. Mortality database. [http://www.who.int/whosis/en] Farazi1 PA, DePinho RA: Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006, 6: 674-687. El-Zayadi AR, Badran HM, Barakat EM, Attia MD, Shawky S, Mohamed MK, Selim O, Saeid A: Hepatocellular carcinoma in Egypt: a single center study over a decade. World J Gastroenterol. 2005, 11: 5193-5198. Frank C, Mohamed MK, Strickland GT, Lavanchy D, Arthur RR, Magder LS, El Khoby T, Abdel-Wahab Y, Aly OES, Anwar W, Sallam I: The role of parenteral antischistosomal therapy in the spread of hepatitis C virus in Egypt. Lancet. 2000, 355: 887-891. Hassan MM, Zaghloul AS, El-Serag HB, Soliman O, Patt YZ, Chappell CL, Beasley RP, Hwang LY: The role of hepatitis C in hepatocellular carcinoma: a case control study among Egyptian patients. J Clin Gastroenterol. 2001, 33: 123-126. Blum HE: Hepatocellular carcinoma: Therapy and prevention. World J Gastroenterol. 2005, 11 (47): 7391-7400. Ramasamy K, Agarwal R: Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008, 269 (2): 352-362. Deep G, Agarwal R: Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr Cancer Ther. 2007, 6: 130-145. Tyagi A, Raina K, Singh RP, Gu M, Agarwal C, Harrison G, Glode LM, Agarwal R: Chemopreventive effects of silymarin and silibinin on N-butyl-N-(4-hydroxybutyl) nitrosamine induced urinary bladder carcinogenesis in male ICR mice. Mol Cancer Ther. 2007, 6: 3248-3255. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB: Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 2006, 26: 4457-4498. Pradeep K, Mohan CVR, Gobianand K, Karthikeyan S: Silymarin modulates the oxidant-antioxidant imbalance during diethylnitrosamine induced oxidative stress in rats. Eur J Pharmacol. 2007, 560: 110-116. Wu YF, Fu SL, Kao CH, Yang CW, Lin CH, Hsu MT, Tsai TF: Chemopreventive Effect of Silymarin on Liver Pathology in HBV X Protein Transgenic Mice. Cancer Res. 2008, 68: 2033-2042. Shaarawy SM, Tohamy AA, Elgendy SM, Abd Elmageed ZY, Bahnasy A, Mohamed MS, Kandil E, Matrougui K: Protective Effects of Garlic and Silymarin on NDEA-Induced Rats Hepatotoxicity. Int J Biol Sci. 2009, 5 (6): 549-557. Sagar SM, Yance D, Wong RK: Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. Curr Oncol. 2006, 13: 14-26. Chen Q, Yang GW, An LG: Apoptosis of hepatoma cells SMMC-7721 induced by Ginkgo biloba seed polysaccharide. World J Gastroenterol. 2002, 8: 832-836. Chao JC, Chu CC: Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells. World J Gastroenterol. 2004, 10: 37-41. Karimov KhY, Inoyatova FKh, Mukhamedova MT: Changes in some indices of the synthesis of nitric oxide during the early stages of hepatocarcinogenesis. Exp Toxicol Pathol. 2003, 55 (1): 17-19. Roy CK, Das AK: Comparative evaluation of different extracts of leaves of Psidium guajava linn. for hepatoprotective activity. Pak J Pharm Sci. 2010, 23 (1): 15-20. Welt K, Weiss J, Martin R, Hermsdorf T, Drews S, Fitzl G: Ginkgo biloba extract protects rat kidney from diabetic and hypoxic damage. Phytomedicine. 2007, 14: 196-203. Bergmeyer HU, Scheibe P, Wahlefeld AW: Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem. 1978, 24: 58-61. Persijn JP, van der Slik W: A new method for the determination of gamma-glutamyltransferase in serum. J Clin Chem Clin Biochem. 1976, 14 (9): 421-427. Beutler E, Duron O, Kelly B: Improved method for determination of blood glutathione. J Lab Clin Med. 1963, 61: 882-888. Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H: Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids. 1994, 59 (6): 383-388. Erden M, Bor NM: Changes in reduced glutathione, glutathione reductase and glutathione peroxidase after radiation in guinea pigs. Biochem Med. 1984, 31: 217-227. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967, 70: 158-169. Nishikimi M, Rao NA, Yagi K: The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972, 46: 849-854. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. Ferrara N: The vascular endothelial growth factor family of polypeptides. Cell Biochem. 1991, 47: 211-218. Singh NP, McCoy MT, Tice RR, Schneider EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988, 175: 184-191. Agner AR, Barbisan LF, Scolastici C, Salvadori DM: Absence of carcinogenic and anticarcinogenic effects of annatto in the rat liver medium-term assay. Food Chem Toxicol. 2004, 42: 1687-1693. Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R: The comet assay: topical issues. Mutagenesis. 2008, 23 (3): 143-151. Bancroft D, Stevens A, Tuner R: Theory and practice of histological techniques. 1996, Edinburgh, London, Melbourne: Churchill Livingstone, 4 Brown JL: N-Nitrosamines. Occup Med. 1999, 14: 839-848. Akintonwa DA: The derivation of nitrosamines from some therapeutic amines in the human environment. Ecotoxicol Environ Saf. 1985, 9: 64-70. Verna L, Whysner J, Williams GM: N-Nitrodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther. 1996, 71: 57-81. Seven A, Guzel S, Seymen O, Civelek S, Bolayirli M, Uncu M, Burcak G: Effects of vitamin E supplementation on oxidative stress in streptozotocin induced diabetic rats: investigation of liver and plasma. Yonsei Med J. 2004, 45: 703-710. Ramakrishnan G, Raghavendran HRB, Vinodhkumar R, Devaki T: Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chemico-Biological Interactions. 2006, 161: 104-114. Habig WH, Pabst MJ, Jakoby WB: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974, 249: 7130-7139. Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman HN: Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood. 1989, 73: 334-339. Soto CP, Perez BL, Favari LP, Reyes JL: Prevention of alloxan-induced diabetes mellitus in the rat by silymarin. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998, 119 (2): 125-129. Naik SR, Panda VS: Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride-induced liver injury in rodents. Liver Int. 2007, 27 (3): 393-399. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardès-Albert M: Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol. 1994, 234: 462-475. Chávez-Morales RM, Jaramillo-Juárez F, Posadas del Río FA, Reyes-Romero MA, Rodríguez-Vázquez ML, Martínez-Saldaña MC: Protective effect of Ginkgo biloba extract on liver damage by a single dose of CCl4 in male rats. Hum Exp Toxicol. 2011, 30 (3): 209-216. Wang SS, Zheng ZG, Weng YQ, Yu YJ, Zhang DF, Fan WH, Dai RH, Hu ZB: Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sciences. 2004, 74: 2467-2478. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, Ullrich A, Hirth KP, McMahon G: SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59: 99-106. Liu JG, Zhao HJ, Liu YJ, Wang XL: Effect of selenium-enriched malt on VEGF and several relevant angiogenic cytokines in diethylnitrosamine-induced hepatocarcinomarats. J Trace Elem Med Biol. 2010, 24 (1): 52-57. Jozkowicz A, Cooke JP, Guevara I, Huk I, Funovics P, Pachinger O, Weidinger F, Dulac J: Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovascular Research. 2001, 51: 773-783. Turlin B, Le Quilleuc D, Leroyer P, Brissot P, Deugnier Y, Loréal O: High vascular endothelial growth factor (VEGF) expression in chemically-induced hepatic microcancers in mice. J Hepatol. 2002, 37 (5): 620-624. Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T, Ishigami S, Toda Y, Nakayama H, Fukumoto M, Fujita J, Imamura M: Clinical significance of vascular endothelial growth factor and basic fibroblastic growth factor gene expression in liver tumor. Hepatology. 1996, 23: 455-464. Jiang C, Agarwal R, Lü J: Anti-Angiogenic Potential of a Cancer Chemopreventive Flavonoid Antioxidant, Silymarin: Inhibition of Key Attributes of Vascular Endothelial Cells and Angiogenic Cytokine Secretion by Cancer Epithelial Cells. Biochem Biophys Res Commun. 2000, 276 (1): 371-378. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ: Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 1998, 95: 365-377. Raina K, Rajamanickam S, Singh RP, Deep G, Chittezhath M, Agarwal R: Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2008, 68 (16): 6822-6830. Koltermann A, Liebl J, Fürst R, Ammer H, Vollmar AM, Zahler S: Ginkgo biloba extract EGb 761 exerts anti-angiogenic effects via activation of tyrosine phosphatases. J Cell Mol Med. 2009, 13 (8B): 2122-2130. McCourt M, Wang JH, Sookhai S, Redmond HP: Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg. 1999, 134: 1325-1331. McCourt M, Wang JH, Sookhai S, Redmond HP: Activated human neutrophils release hepatocyte growth factor/scatter factor. Eur J Surg Oncol. 2001, 27: 396-403. Tice RR, Andrews PW, Hirai O, Singh NP: The single cell gel (SCG) assay: an electrophoretic technique for the detection of DNA damage in individual cells. Adv Exp Med Biol. 1991, 283: 157-164. Fairbrain DW, Walburger DK, Fairbrain JJ, O'Neill KL: Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning. 1996, 18: 407-416. Horst MA, Ong TP, Jordão AA, Vannucchi H, Moreno FS, Lajolo FM: Water extracts of cabbage and kale inhibit ex vivo H2O2 -induced DNA damage but not rat hepatocarcinogenesis. Braz J Med Biol Res. 2010, 43 (3): 242-248. Saravanan R, Pugalendi KV: Assessment of the pharmacological effect of silymarin on ethanol-induced DNA damage by single-cell gel electrophoresis. Indian J Pharmacol. 2005, 37: 261-262. Yu TW, Anderson D: Reactive oxygen species-induced DNA damage and its modification: A chemical investigation. Mutat Res. 1997, 379: 201-210. Thiagarajan G, Chandani S, Harinarayana Rao S, Samuni AM, Chandrasekaran K, Balasubramanian D: Molecular and cellular assessment of ginkgo biloba extract as a possible ophthalmic drug. Exp Eye Res. 2002, 75 (4): 421-430. Keles MS, Demirci N, Yildirim A, Atamanalp SS, Altinkaynak K: Protective effects of N-acetylcysteine and Ginkgo biloba extract on ischaemia-reperfusion-induced hepatic DNA damage in rats. Clin Exp Med. 2008, 8 (4): 193-198. Min K, Ebeler SE: Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food Chem Toxicol. 2009, 47 (11): 2716-2722. Jahan MS, Vani G, Shyamaladevi CS: Anti-carcinogenic Effect of Solarium trilobatum in Diethylnitrosamine Induced and Phenobarbital Promoted Hepatocarcinogenesis in Rats. Asian J Biochem. 2011, 6 (1): 74-81. Sivaramakrishnan V, Shilpa PN, Praveen Kumar VR, Niranjali Devaraj S: Attenuation of N-nitrosodiethylamine induced hepatocellular carcinogenesis by a novel flavonol-Morin. Chem Biol Interact. 2008, 171: 79-88. Dias MC, Rodrigues MA, Reimberg MC, Barbisan LF: Protective effects of Ginkgo biloba against rat liver carcinogenesis. Chem Biol Interact. 2008, 173 (1): 32-42. Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB: Antioxidant and Antimutagenic Effect of Quercetin against DEN Induced Hepatotoxicity in Rat. Phytother Res. 2010, 24: 119-128.