The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain

Neural Development - Tập 7 Số 1 - 2012
Çağhan Kızıl1, Stefanie Dudczig1, Nikos Kyritsis1, Anja Machate1, Juliane Blaesche1, Volker Kroehne1, Michael Brand1
1DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstr. 105, Dresden, 01307, Germany

Tóm tắt

Abstract Background Unlike mammals, zebrafish exhibits extensive neural regeneration after injury in adult stages of its lifetime due to the neurogenic activity of the radial glial cells. However, the genes involved in the regenerative neurogenesis response of the zebrafish brain are largely unknown. Thus, understanding the underlying principles of this regeneration capacity of the zebrafish brain is an interesting research realm that may offer vast clinical ramifications. Results In this paper, we characterized the expression pattern of cxcr5 and analyzed the function of this gene during adult neurogenesis and regeneration of the zebrafish telencephalon. We found that cxcr5 was upregulated transiently in the RGCs and neurons, and the expression in the immune cells such as leukocytes was negligible during both adult neurogenesis and regeneration. We observed that the transgenic misexpression of cxcr5 in the ventricular cells using dominant negative and full-length variants of the gene resulted in altered proliferation and neurogenesis response of the RGCs. When we knocked down cxcr5 using antisense morpholinos and cerebroventricular microinjection, we observed outcomes similar to the overexpression of the dominant negative cxcr5 variant. Conclusions Thus, based on our results, we propose that cxcr5 imposes a proliferative permissiveness to the radial glial cells and is required for differentiation of the RGCs to neurons, highlighting novel roles of cxcr5 in the nervous system of vertebrates. We therefore suggest that cxcr5 is an important cue for ventricular cell proliferation and regenerative neurogenesis in the adult zebrafish telencephalon. Further studies on the role of cxcr5 in mediating neuronal replenishment have the potential to produce clinical ramifications in efforts for regenerative therapeutic applications for human neurological disorders or acute injuries.

Từ khóa


Tài liệu tham khảo

Chapouton P, Jagasia R, Bally-Cuif L: Adult neurogenesis in non-mammalian vertebrates. Bioessays. 2007, 29: 745-757.

Kaslin J, Ganz J, Brand M: Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 101-122. 10.1098/rstb.2006.2015.

Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M: Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development. 2011, 138: 4831-4841. 10.1242/dev.072587.

Baumgart EV, Barbosa JS, Bally-Cuif L, Gotz M, Ninkovic J: Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia. 2011, 60: 343-357.

Kishimoto N, Shimizu K, Sawamoto K: Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech. 2011, 5: 200-209.

Kizil C, Kaslin J, Kroehne V, Brand M: Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol. 2012, 72: 429-461. 10.1002/dneu.20918.

Adolf B, Chapouton P, Lam CS, Topp S, Tannhäuser B, Strähle U, Götz M, Bally-Cuif L: Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol. 2006, 295: 278-293. 10.1016/j.ydbio.2006.03.023.

Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M: Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol. 2006, 295: 263-277. 10.1016/j.ydbio.2006.03.040.

Stigloher C, Chapouton P, Adolf B, Bally-Cuif L: Identification of neural progenitor pools by E(Spl) factors in the embryonic and adult brain. Brain Res Bull. 2008, 75: 266-273. 10.1016/j.brainresbull.2007.10.032.

Zupanc GKH: Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol. 2008, 102: 357-373.

Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M: Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci. 2009, 29: 6142-6153. 10.1523/JNEUROSCI.0072-09.2009.

Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M: Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia. 2010, 58: 1345-1363.

Antos CL, Brand M: Encyclopedia of Life Sciences. Regeneration of Organs and Appendages in Zebrafish: A Window into Underlying Control Mechanisms. Edited by: Zheng Y. 2010, Wiley Ltd, Chichester

Rinkwitz S, Mourrain P, Becker TS: Zebrafish: an integrative system for neurogenomics and neurosciences. Prog Neurobiol. 2011, 93: 231-243. 10.1016/j.pneurobio.2010.11.003.

Rothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, Fortin G, Gotz M, Jagasia R, Bally-Cuif L: Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development. 2011, 138: 1459-1469. 10.1242/dev.058156.

Müller G, Lipp M: Signal transduction by the chemokine receptor CXCR5: structural requirements for g protein activation analyzed by chimeric CXCR1/CXCR5 molecules. Biol Chem. 2001, 382: 1387-1397.

Wess J: G-Protein coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 1997, 11: 346-354.

Dobner T, Wolf I, Emrich T, Lipp M: Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt’s lymphoma. Eur J Immunol. 1992, 22: 2795-2799. 10.1002/eji.1830221107.

Xu QQ, Chang MX, Sun RH, Xiao FS, Nie P: The first non-mammalian CXCR5 in a teleost fish: molecular cloning and expression analysis in grass carp (Ctenopharyngodon idella). BMC Immunol. 2010, 11: 25-10.1186/1471-2172-11-25.

Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT: A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature. 1998, 391: 799-803. 10.1038/35876.

Zlotnik A, Yoshie O: Chemokines: A new classification system and their role in immunity. Immunity. 2000, 12: 121-127. 10.1016/S1074-7613(00)80165-X.

Müller G, Höpken UE, Lipp M: The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev. 2003, 195: 117-135. 10.1034/j.1600-065X.2003.00073.x.

Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisäkk P, Ransohoff RM, Hofbauer M, Farina C, Derfuss T, Hartle C, Newcombe J, Hohlfeld R, Meinl E: Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006, 129: 200-211.

Brunn A, Montesinos-Rongen M, Strack A, Reifenberger G, Mawrin C, Schaller C, Deckert M: Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma. Acta Neuropathol. 2007, 114: 271-276. 10.1007/s00401-007-0258-x.

Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA: Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007, 110: 3316-3325. 10.1182/blood-2007-05-089409.

Förster R, Emrich T, Kremer E, Lipp M: Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B Cells and a subset of t-helper memory cells. Blood. 1994, 84: 830-840.

Förster R, Wolf I, Kaiser E, Lipp M: Selective expression of the murine homologue of the G-protein-coupled receptor BLR1 in B cell differentiation, B cell neoplasia and defined area of the cerebellum. Cell Mol Biol. 1994, 40: 381-387.

Kaiser E, Förster R, Wolf I, Ebensperger C, Kuehl WM, Lipp M: The G protein-coupled receptor BLR1 is involved in murine B cell differentiation and is also expressed in neuronal tissues. Eur J Immunol. 1993, 23: 2532-2539. 10.1002/eji.1830231023.

Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud PO, Cazaubon S: IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol. 2010, 223: 131-134. 10.1016/j.jneuroim.2010.03.009.

Kizil C, Brand M: Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells. PLoS One. 2011, 6: e27395-10.1371/journal.pone.0027395.

März M, Chapouton P, Diotel N, Vaillant C, Hesl B, Takamiya M, Lam CS, Kah O, Bally-Cuif L, Strähle U: Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia. 2010, 58: 87-888.

Yeo SY, Kim M, Kim HS, Huh TL, Chitnis AB: Fluorescent protein expression driven by her4 regulatory elements reveals the spatiotemporal pattern of Notch signaling in the nervous system of zebrafish embryos. Dev Biol. 2007, 301: 555-567. 10.1016/j.ydbio.2006.10.020.

Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK, Shin J, Yoo KW, Hibi M, Hirano T, Miki N, Chitnis AB, Huh TL: Analysis of upstream elements in the HuC promotor leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000, 227: 279-293. 10.1006/dbio.2000.9898.

Korzh V, Sleptsova I, Liao J, He J, Gong Z: Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neuronal differentiation. Dev Dyn. 1998, 213: 92-104. 10.1002/(SICI)1097-0177(199809)213:1<92::AID-AJA9>3.0.CO;2-T.

Yan RT, Ma W, Liang L, Wang SZ: bHLH genes and retinal cell fate specification. Mol Neurobiol. 2005, 32: 157-171. 10.1385/MN:32:2:157.

Lucin KM, Wyss-Coray T: Immune activation in brain aging and neurodegeneration: too much or too little?. Neuron. 2009, 64: 110-122. 10.1016/j.neuron.2009.08.039.

Rolls A, Shechter R, Schwartz M: The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009, 10: 235-241.

Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience. 2009, 158: 1021-1029. 10.1016/j.neuroscience.2008.06.052.

Russo I, Barlati S, Bosetti F: Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem. 2011, 116: 947-956. 10.1111/j.1471-4159.2010.07168.x.

Redd M, Kelly G, Dunn G, Way M, Martin P: Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskel. 2006, 63: 415-422. 10.1002/cm.20133.

Morrens J, Van Den Broeck W, Kempermann G: Glial cells in adult neurogenesis. Glia. 2011, 60: 159-174.

Yiu G, He Z: Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006, 7: 617-627.

Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Götz M: Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA. 2008, 105: 3581-3586. 10.1073/pnas.0709002105.

Silver J, Miller JH: Regeneration beyond the glial scar. Nat Rev Neurosci. 2004, 5: 146-156. 10.1038/nrn1326.

Emsley JG, Mitchell BD, Kempermann G, Macklis JD: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005, 75: 321-341. 10.1016/j.pneurobio.2005.04.002.

Sofroniew MV: Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009, 32: 638-647. 10.1016/j.tins.2009.08.002.

Kempermann G: Adult Neurogenesis 2: Stem Cells and Neuronal Development in the Adult Brain. 2010, Oxford University Press, Oxford, 2

Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O: Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA. 2003, 100: 13632-13637. 10.1073/pnas.2234031100.

Monje M, Toda H, Palmer TD: Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003, 302: 1760-1765. 10.1126/science.1088417.

Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC: Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem. 2009, 108: 1343-1359. 10.1111/j.1471-4159.2009.05886.x.

Brand M, Granato M, Nüsslein-Volhard C: Zebrafish: A practical approach. Keeping and raising zebrafish. Edited by: Nüsslein-Volhard C, Dahm R. 2002, Oxford University Press, Oxford, 7-39.

Streisinger G, Walker C, Dower N, Nauber D, Singer F: Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981, 291: 293-296. 10.1038/291293a0.

Kizil C, Otto GW, Geisler R, Nusslein-Volhard C, Antos CL: Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration. Dev Biol. 2009, 325: 329-340. 10.1016/j.ydbio.2008.09.032.

Kawakami K, Shima A: Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene. 1999, 240: 239-244. 10.1016/S0378-1119(99)00444-8.

Kawakami K: Transposon Tools and Methods in Zebrafish. Dev Dyn. 2005, 234: 244-245. 10.1002/dvdy.20516.

Hans S, Kaslin J, Freudenreich D, Brand M: Temporally-controlled site-specific recombination in zebrafish. PLoS One. 2009, 4: e4640-10.1371/journal.pone.0004640.

Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M: Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/Lox strategies in zebrafish. Dev Dyn. 2011, 240: 108-115. 10.1002/dvdy.22497.