Thành phần hóa học và công nghệ chế tác của các viên bi thủy tinh được khai thác từ di tích Hetian Bizili, Tân Cương
Tóm tắt
Di tích Bizili ở huyện Lop, nằm trên tuyến đường phía nam của Con đường tơ lụa ở Tân Cương, Trung Quốc, đã từng là một trung tâm thương mại và văn hóa giữa phương Đông và phương Tây trong thời kỳ cổ đại. Năm 2016, một số lượng lớn các viên bi thủy tinh đã được khai quật từ 40 ngôi mộ được khai thác tại địa điểm này. Trong nghiên cứu này, chúng tôi đã xác định thành phần hóa học và công nghệ chế tác của thân và trang trí của mười hai viên bi thủy tinh từ ngôi mộ M5 của Bizili bằng các phương pháp LA-ICP-AES, EDXRF, Quang phổ Raman và SR-μCT. Thành phần hóa học của các viên bi đều là Na2O–CaO–SiO2, với tro thực vật chủ yếu được sử dụng làm chất trợ dung. Chì antimonat và chì stanat được sử dụng làm chất làm mờ. Chúng tôi phát hiện nồng độ bo cao và nồng độ photpho cao trong một số viên bi: điều này được thảo luận trong bối cảnh loại chất trợ dung được sử dụng và khả năng sử dụng một chất làm mờ giàu photpho. Một số viên bi có hàm lượng nhôm cao có thể có nguồn gốc từ Pakistan. Về mặt công nghệ chế tác, các nghệ nhân đã tạo ra viên bi 'mắt' theo những cách khác nhau và cũng trang trí những viên bi theo kiểu vết.
Từ khóa
Tài liệu tham khảo
Chen G. Study on the cultures of the Bronze Age and early Iron Age in Xinjiang area. Archaeology. 1990;4:366–74 (In Chinese).
Liu S, Li QH, Gan F, Zhang P, Lankton JW. Silk Road glass in Xinjiang, China: chemical compositional analysis and interpretation using a high-resolution portable XRF spectrometer. J Archaeol Sci. 2012;39(7):2128–42.
Yingzhu W. The technological research of faience in Western Zhou and Eastern Zhou periods. University of science and technology Beijing, Doctoral dissertation. 2019. p. 1–6 (In Chinese).
Liu N, Yang Y, Wang Y, et al. Nondestructive characterization of ancient faience beads unearthed from Ya’er cemetery in Xinjiang, Early Iron Age China. Ceram Int. 2017;43(13):10460–7.
Xinjiang Institute of Cultural Relics and Archaeology. Saensayi site of Xinjiang, China. Cultural Relics. 2013. p. 1–261 (In Chinese).
Gan F, Li Q, Gu D, et al. Study on early glass beads unearthed from Baicheng and Tacheng of Xinjiang. J Chin Ceram Soc. 2003;07:663–8.
Xinjiang Institute of Cultural Relics and Archaeology. Shanpula, Xinjiang, China. The Peoples Press of Xinjiang. 2001. p. 1–239 (In Chinese).
Yu Z. Archaeological excavation of Niya site M8 cemetery in Xinjiang. Cult Relics. 2000;2000(1):4–40 (In Chinese).
Lin Y. A scientific study of glass finds from the Niya site in Xinjiang, Doctoral dissertation. 2009. p. 1–171 (In Chinese).
Wu X. Archaeological excavation of Jierzankale Cemetery in Xinjiang in 2013. West Reg Stud. 2014;2014(1):124–7 (In Chinese).
Cheng Q, Guo JL, et al. Characteristicsofchemicalcompositionofglassfindsfromthe Qiemo tombsitesonthe Silk Road. Spectrosc Spectr Anal. 2012;32(7):1955–60.
Hu X, et al. New archaeological discovery of Bizili Cemetery in Luopu County, Xinjiang. West Reg Stud. 2017;2017(1):144–6 (In Chinese).
Yang J, Zhao HX, Yu P. Analysis of composite glass beads (eye-beads) unearthed from the Shahe Tomb in the Changping District of Beijing. Sci Conserv Archaeol. 2012;24(2):74–83 (In Chinese).
Zhao D. Exotic beads and pendants in ancient China: from western Zhou to eastern Jin Dynasty. Beijing: Science Press; 2016. p. 54–5 (In Chinese).
Brill R. (with a contribution by Brandt A. Rising). Chemical analyses of early glasses. Corning: The Corning Museum of Glass; 1999.
Panighello S, Orsega EF, Elteren JTV, et al. Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J Archaeol Sci. 2012;39(9):2945–55.
Henderson J, Warren SE. X-ray fluorescence of Iron Age glass: beads from Meare and Glastonbury Lake Villages. Archaeometry. 2010;23(1):83–94.
Shortland A. The used and origin of antimonate colorants in early Egyptian glass. Archaeometry. 2002;44(4):517–30.
Duckworth C, Henderson J, Rutten FJM, Nikita K. Opacifiers in late Bronze Age glasses: the use of ToF-SIMS to identify raw ingredients and production techniques. J Archaeol Sci. 2012;39:2143–52.
Cheng Q, Guo J. The use of antimony and tin in ancient western glass making. In: Tenth national symposium on archaeology and heritage conservation. 2008. p. 386–92 (In Chinese).
Liu S. The development of portable X-ray fluorescence analysis and its application in scientific and technological archaeology, Doctoral dissertation. 2011. p. 77–95 (In Chinese).
Gallo F, Silvestri A, Molin G. Glass from the archaeological museum of Adria (North-East Italy): new insights into Early Roman production technologies. J Archaeol Sci. 2013;40(6):2589–605.
Barkoudah Y, Henderson J. Plant ashes from Syria and the manufacture of ancient glass: ethnographic and scientific aspects. J Glass Stud. 2006;48(1):297–321.
Dussubieux L, Gratuze B, Blet-Lemarquand M. Mineral soda alumina glass: occurrence and meaning. J Archaeol Sci. 2010;37(7):1646–55.
Dussubieux L, Gratuze B. Nature et origine des objets en verre retrouvés áBegram (Afghanistan) et á Bara (Pakistan). In: Bopearachchi O, Landes C, Sachs C, editors. De l’Indus á l’Oxus: Arché ologie de l’Asie Centrale. Lattes: Association Imago, Musée de Lattes. 2003. p. 315–23.
Dussubieux L, Gratuze B. Glass in South Asia. In: Janssens K, editor. modern methods of analyzing archaeological and historical glass. New York: Wiley; 2013. p. 401–30.
Cheng Q, Zhang X, Guo J, et al. Application of computed tomography in the analysis of glass beads unearthed in Shanpula cemetery (Khotan), Xinjiang Uyghur Autonomous Region. Archaeol Anthropol Sci. 2019;11:937–45.
Brill RH, Stapleton CP. Chemical analyses of early glasses, vol. 3, The years 2000–2011, Reports and Essays. Corning Museum of Glass, Corning, New York. 2012.
Matin M. Tin-based opacifiers in archaeological glass and ceramic glazes: a review and new perspectives. Archaeol Anthropol Sci. 2018;11(4):1–13.
Purowski T, Dzierżanowski P, Bulska E, Wagner B, Nowak A. A study of glass beads from the Hallstatt C-D from southwestern Poland: implications for glass technology and provenance. Archaeometry. 2012;54:144–66.
Van Ham-Meert A, Dillis S, et al. A unique recipe for glass beads at Iron Age Sardis. J Archaeol Sci. 2019;108:0305–4403.
Fiorentino S, Vandini M, Chinni T, Caccia M, Martini M, Galli A. Colourants and opacifiers of mosaic glass tesserae from Khirbet al-Mafjar (Jericho, Palestine): addressing technological issues by a multi-analytical approach and evaluating the potentialities of thermo-luminescence and optically stimulated luminescence dating. J Archaeol Anthropol. 2017;11:1–23.
Fiorentino S, Chinni T, Cirelli E, Arletti R, Conte S, Vandini M. Considering the effects of the Byzantine-Islamic transition: Umayyad glass tesserae and vessels from the qasr of Khirbet al-Mafjar (Jericho, Palestine). J Archaeol Anthropol. 2018;10:223–45.
Clark RJH, Cridland L, Kariuki BM, Harris KDM, Withnall R. Synthesis, structural characterization and Raman spectroscopy of the inorganic pigments lead-tin yellow types I and II and lead antimonate yellow: their identification on medieval paintings and manuscripts. J Chem Soc Dalton Trans. 1995;16:2577–82.
Jackson CM, Booth CA, Smedley JW. Glass by design? Raw materials, recipes and compositional data. Archaeometry. 2005;47:781–95.
Meek A, Henderson J, Evans J. The isotopic analysis of English Forest glass from the Weald and Staffordshire. J Anal Atomic Spectrosc. 2012;27:786–95.
Silvestria A, Nestola F, Peruzzo L. Multi-methodological characterisation of calcium phosphate in late-antique glass mosaic tesserae. Microchem J. 2016;124:811–8.
Li QI, Liu S, Zhao HX, Gan FX. Characterization of some ancient glass beads unearthed from the Kizil reservoir and Wanquan cemeteries in Xinjiang, China. Archaeometry. 2014;56:601–24.
Henderson J, An J, Ma H. The archaeology and archaeometry of Chinese glass: a review. Archaeometry. 2018;60:88–104.
Zhao HX, Li QH, Liu S, Gan FX. Characterisation of microcrystals in some ancient glass beads from China by means of confocal Raman microspectroscopy. J Raman Spectrosc. 2013;44:643–9.
Gan F. Development of Chinese ancient glass. Shanghai: Shanghai Scientific & Technical Publishers; 2016. p. 69–75 (In Chinese).
Spaer M. Some observations on the stratified Mediterranean eye-beads of the first millennium BC. Association internationale pour l'historie du verre. Annales du 10e congres de l'association internationale pour l'histoire du verre 1985. Amsterdam: International Association for the History of Glass; 1987. p. 1–12.
Spaer M. Ancient glass in the Israel museum beads and other small objects. Jerusalem: The Israel Museum; 2001.
Yu Y. Research on beads unearthed from Hunan Province. Changsha: Hunan People’s Publishing House; 2018. p. 50–253 (In Chinese).
Jiayao A. A brief history of glasswares in China. Beijing: Social Sciences Academic Press; 2011. p. 49–51 (In Chinese).
Kanungo AK. Glass beads in Indian archaeology: an ethnoarchaeological approach. Bull Deccan Coll. 2001;60–61:337–53.
Zhao D. Study on etched carnelian beads unearthed in China. Archaeology. 2011;10:68–78 (In Chinese).
Huang X, Yan J, Wang H. Analysis of the decorated silicate beads excavated from Tomb M4 of the Ma-Jia-Yuan Warring States Cemetery, Gansu Province. Spectrosc Spectr Anal. 2015;35(10):2895–900 (In Chinese).
Cheng Q, Chun Yu, Xi L, He W. A test and preliminary study of the composition of the glass excavated from the Norbutso Site of Ngari in Tibet-and a discussion of the Silk Road in Ngari. J Tibetol. 2017;02:264–74 (In Chinese).
Lv H. The study on the early burials in the western Himalaya region. Acta Archaeol Sin. 2015;2015(1):1–34 (In Chinese).