The characteristic and potential therapeutic effect of isolated multidrug-resistant Acinetobacter baumannii lytic phage
Tóm tắt
Widespread misuse of antibiotics caused bacterial resistance increasingly become a serious threat. Bacteriophage therapy promises alternative treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated and characterized a novel, potent lytic bacteriophage against multi-drug resistant (MDR) Acinetobacter baumannii and described the lytic capability and endolysin activity of the phage to evaluate the potential in phage therapy. A novel phage, pIsf-AB02, was isolated from hospital sewage. The morphological analysis, its host range, growth characteristics, stability under various conditions, genomic restriction pattern were systematically investigated. The protein pattern of the phage was analyzed, and the endolysin activity of the phage was determined under the non-denaturing condition on SDS-PAGE. The optimal lytic titer of phage was assessed by co-culture of the phage with clinical MDR A. baumannii isolates. Finally, HeLa cells were used to examine the safety of the phage. The morphological analysis revealed that the pIsf-AB02 phage displays morphology resembling the Myoviridae family. It can quickly destroy 56.3% (27/48) of clinical MDR A. baumannii isolates. This virulent phage could decrease the bacterial host cells (from 108 CFU/ml to 103 CFU/ml) in 30 min. The optimum stability of the phage was observed at 37 °C. pH 7 is the most suitable condition to maintain phage stability. The 15 kDa protein encoded by pIsf-AB02 was detected to have endolysin activity. pIsf-AB02 did not show cytotoxicity to HeLa cells, and it can save HeLa cells from A. baumannii infection. In this study, we isolated a novel lytic MDR A. baumannii bacteriophage, pIsf-AB02. This phage showed suitable stability at different temperatures and pHs, and demonstrated potent in vitro endolysin activity. pIsf-AB02 may be a good candidate as a therapeutic agent to control nosocomial infections caused by MDR A. baumannii.
Tài liệu tham khảo
Bassetti M, Righi E, Esposito S, Petrosillo N, Nicolini L: Drug treatment for multidrug-resistant Acinetobacter baumannii infections. 2008.
Rice LB. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31(S1):S7–10.
Navidinia M: The clinical importance of emerging ESKAPE pathogens in nosocomial infections. 2016.
Gong Y, Shen X, Huang G, Zhang C, Luo X, Yin S, Wang J, Hu F, Peng Y, Li M. Epidemiology and resistance features of Acinetobacter baumannii isolates from the ward environment and patients in the burn ICU of a Chinese hospital. J Microbiol. 2016;54(8):551–8.
Huang G, Yin S, Gong Y, Zhao X, Zou L, Jiang B, Dong Z, Chen Y, Chen J, Jin S. Multilocus sequence typing analysis of carbapenem-resistant Acinetobacter baumannii in a Chinese burns institute. Front Microbiol. 2016;7:1717.
Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis. 2008;46(7):1121–2.
Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I. Bacteriophages and their implications on future biotechnology: a review. Virol J. 2012;9(1):9.
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol. 2019;10:539.
Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol. 2002;153(1):13–8.
Laanto E, Sundberg L-R, Bamford JK. Phage specificity of the freshwater fish pathogen Flavobacterium columnare. Appl Environ Microbiol. 2011;77(21):7868–72.
Parisien A, Allain B, Zhang J, Mandeville R, Lan C. Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol. 2008;104(1):1–13.
Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother. 2005;11(5):211–9.
Lai M-J, Soo P-C, Lin N-T, Hu A, Chen Y-J, Chen L-K, Chang K-C. Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int J Antimicrob Agents. 2013;42(2):141–8.
Fan J, Zeng Z, Mai K, Yang Y, Feng J, Bai Y, Sun B, Xie Q, Tong Y, Ma J. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S aureus bacteriophage IME-SA1. Veter Microbiol. 2016;191:65–71.
Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162.
Philipson CW, Voegtly LJ, Lueder MR, Long KA, Rice GK, Frey KG, Biswas B, Cer RZ, Hamilton T, Bishop-Lilly KA. Characterizing phage genomes for therapeutic applications. Viruses. 2018;10(4):188.
Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA, Harrison LH, Doi Y. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother. 2008;52(11):3837–43.
Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(2):117–22.
Safari M, Saidijam M, BAHADOR A, Jafari R, Alikhani MY: High prevalence of multidrug resistance and metallo-beta-lactamase (MbetaL) producing Acinetobacter baumannii isolated from patients in ICU wards, Hamadan, Iran. 2013.
Wayne P: Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 28th informational supplement. CLSI document M100-S20 2018.
Standardization IOf: Water Quality: Detection and Enumeration of Bacteriophages: ISO; 2000.
Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP: Enumeration of bacteriophages by double agar overlay plaque assay. In Bacteriophages. Springer; 2009: 69–76.
Kusradze I, Karumidze N, Rigvava S, Dvalidze T, Katsitadze M, Amiranashvili I, Goderdzishvili M. Characterization and testing the efficiency of Acinetobacter baumannii phage vB-GEC_Ab-M-G7 as an antibacterial agent. Front Microbiol. 2016;7:1590.
Lockington RA, Attwood GT, Brooker JD. Isolation and characterization of a temperate bacteriophage from the ruminal anaerobe Selenomonas ruminantium. Appl Environ Microbiol. 1988;54(6):1575–80.
Capra M, Quiberoni A, Reinheimer J. Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains. J Appl Microbiol. 2006;100(2):334–42.
Shen G-H, Wang J-L, Wen F-S, Chang K-M, Kuo C-F, Lin C-H, Luo H-R, Hung C-H. Isolation and characterization of φkm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS ONE. 2012;7:10.
Laemmli UK, Favre M. Maturation of the head of bacteriophage T4: I. DNA packaging events J Mol Biol. 1973;80(4):575–99.
Jyothisri K, Deepak V, Rajeswari MR. Purification and characterization of a major 40 kDa outer membrane protein of Acinetobacter baumannii. FEBS Lett. 1999;443(1):57–60.
Lee C-N, Tseng T-T, Lin J-W, Fu Y-C, Weng S-F, Tseng Y-H. Lytic myophage Abp53 encodes several proteins similar to those encoded by host Acinetobacter baumannii and phage phiKO2. Appl Environ Microbiol. 2011;77(19):6755–62.
Ghajavand H, Esfahani BN, Havaei A, Fazeli H, Jafari R, Moghim S. Isolation of bacteriophages against multidrug resistant Acinetobacter baumannii. Res Pharm Sci. 2017;12(5):373.
Mahmoudi Monfared A, Rezaei A, Poursina F, Faghri J. Detection of genes involved in biofilm formation in MDR and XDR Acinetobacter baumannii isolated from human clinical specimens in Isfahan. Iran Arch Clin Infect Dis. 2019;14:2.
Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020;13(1):1–6.
Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ. Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob Agents Chemother. 2016;60(10):5806–16.
Merabishvili M, Vandenheuvel D, Kropinski AM, Mast J, De Vos D, Verbeken G, Noben J-P, Lavigne R, Vaneechoutte M, Pirnay J-P. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PLoS ONE. 2014;9(8):e104853.
Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ. Viruses from extreme thermal environments. Proc Natl Acad Sci. 2001;98(23):13341–5.
Arnold HP, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Weidmann JF, Kristjanson JK, Klenk HP, Nelson KE. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology. 2000;267(2):252–66.
Capra ML, Binetti AG, Mercanti DJ, Quiberoni A, Reinheimer JA. Diversity among Lactobacillus paracasei phages isolated from a probiotic dairy product plant. J Appl Microbiol. 2009;107(4):1350–7.
Atamer Z, Dietrich J, Müller-Merbach M, Neve H, Heller KJ, Hinrichs J. Screening for and characterization of Lactococcus lactis bacteriophages with high thermal resistance. Int Dairy J. 2009;19(4):228–35.
Yang Z, Yin S, Li G, Wang J, Huang G, Jiang B, You B, Gong Y, Zhang C, Luo X. Global transcriptomic analysis of the interactions between phage φAbp1 and extensively drug-resistant acinetobacter baumannii. MSystems. 2019;4(2):e00068-e119.
Vieira A, Silva Y, Cunha A, Gomes N, Ackermann H-W, Almeida A. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur J Clin Microbiol Infect Dis. 2012;31(11):3241–9.
Kocharunchitt C, Ross T, McNeil D. Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int J Food Microbiol. 2009;128(3):453–9.
Kitti T, Thummeepak R, Thanwisai A, Boonyodying K, Kunthalert D, Ritvirool P, Sitthisak S. Characterization and detection of endolysin gene from three Acinetobacter baumannii bacteriophages isolated from sewage water. Indian J Microbiol. 2014;54(4):383–8.
Düring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 1999;449(2–3):93–100.
Orito Y, Morita M, Hori K, Unno H, Tanji Y. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol. 2004;65(1):105–9.
Lai M-J, Lin N-T, Hu A, Soo P-C, Chen L-K, Chen L-H, Chang K-C. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl Microbiol Biotechnol. 2011;90(2):529–39.
Zhang H, Buttaro BA, Fouts DE, Sanjari S, Evans BS, Stevens RH. Bacteriophage φEf11 ORF28 endolysin, a multifunctional lytic enzyme with properties distinct from all other identified Enterococcus faecalis phage endolysins. Appl Environ Microbiol. 2019;85(13):e00555-e1519.
Brown N, Cox C. Bacteriophage Use in Molecular Biology and Biotechnology. Bacteriophage Biol Technol Ther. 2021;90:465–506.
Chen J, Novick RP. Phage-mediated intergeneric transfer of toxin genes. Science. 2009;323(5910):139–41.
Jo A, Kim J, Ding T, Ahn J. Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus. Food science and biotechnology. 2016;25(4):1211–5.
Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE. 2017;12(1):e0168615.
Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61(10):e00954-e1917.
Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med. 2016;52(2):99–105.