Hệ thống renin-angiotensin trung ương và hoạt động dây thần kinh giao cảm trong suy tim mạn tính
Tóm tắt
Suy tim mạn tính (CHF) là một quá trình bệnh lý đa yếu tố, đặc trưng bởi sự kích hoạt quá mức của hệ thống RAAS (hệ thống renin-angiotensin-aldosterone) và hệ thần kinh giao cảm. Cả hai hệ thống này đều được kích hoạt một cách mạn tính trong CHF. Hệ thống RAAS bao gồm một nhánh kích thích liên quan đến AngII (angiotensin II), ACE (enzyme chuyển đổi angiotensin) và AT1R (thụ thể angiotensin II dạng 1). Hệ thống RAAS cũng bao gồm một nhánh bảo vệ bao gồm Ang-(1–7) [angiotensin-(1–7)], AT2R (thụ thể angiotensin II dạng 2), ACE2 và thụ thể Mas. Sự kích thích giao cảm trong CHF chủ yếu được thúc đẩy bởi sự mất cân bằng giữa hai nhánh này, với sự gia tăng của nhánh AngII/AT1R/ACE và sự giảm của nhánh AT2R/ACE2. Sự mất cân bằng này được biểu hiện tại các vùng kiểm soát tim mạch trong não, chẳng hạn như hành tủy ventrolateral rostral và nhân cạnh não trong vùng dưới đồi. Bài tổng quan này tập trung vào tài liệu hiện có mô tả các thành phần của hai nhánh này của RAAS và sự mất cân bằng của chúng trong trạng thái CHF. Hơn nữa, bài tổng quan này cung cấp thêm bằng chứng về sự liên quan của ACE2 và Ang-(1–7) như những yếu tố chủ chốt trong việc điều chỉnh dòng ra giao cảm trung ương trong CHF. Cuối cùng, chúng tôi cũng xem xét ảnh hưởng của việc tập luyện thể dục như một chiến lược điều trị và các cơ chế phân tử đang hoạt động trong CHF, một phần, do khả năng của việc tập luyện thể dục trong việc khôi phục lại sự cân bằng của trục RAAS và dòng ra giao cảm.
Từ khóa
Tài liệu tham khảo
Roger, 2011, Heart disease and stroke statistics–2012 update: a report from the American Heart Association, Circulation, 125, e2
Dzau, 1981, Relation of the renin–angiotensin–aldosterone system to clinical state in congestive heart failure, Circulation, 63, 645, 10.1161/01.CIR.63.3.645
Francis, 1989, The relationship of the sympathetic nervous system and the renin–angiotensin system in congestive heart failure, Am. Heart J., 118, 642, 10.1016/0002-8703(89)90291-3
Holtz, 1993, Pathophysiology of heart failure and the renin–angiotensin–system, Basic Res. Cardiol., 88, 183
Bristow, 1992, β-Adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms, J. Clin. Invest., 89, 803, 10.1172/JCI115659
Bristow, 1986, β1- and β2-Adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure, Circ. Res., 59, 297, 10.1161/01.RES.59.3.297
Freeman, 2001, Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy, J. Clin. Invest., 107, 967, 10.1172/JCI12083
Ljungman, 1990, Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function, Drugs, 39, 10, 10.2165/00003495-199000394-00004
Sobotka, 2012, The role of renal denervation in the treatment of heart failure, Curr. Cardiol. Rep., 14, 285, 10.1007/s11886-012-0258-x
Felder, 2003, Heart failure and the brain: new perspectives, Am. J. Physiol. Regul. Integr. Comp. Physiol., 284, R259, 10.1152/ajpregu.00317.2002
Francis, 2004, Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure, Am. J. Physiol. Heart Circ. Physiol., 287, H2138, 10.1152/ajpheart.00112.2004
Hegarty, 1996, Influence of circulating angiotensin II and vasopressin on neurons of the nucleus of the solitary tract, Am. J. Physiol. Regul. Integr. Comp. Physiol., 270, R675, 10.1152/ajpregu.1996.270.3.R675
Huang, 2009, The brain renin–angiotensin–aldosterone system: a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction, Curr. Heart Fail. Rep., 6, 81, 10.1007/s11897-009-0013-9
Zucker, 2004, The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide, Prog. Biophys. Mol. Biol., 84, 217, 10.1016/j.pbiomolbio.2003.11.010
Bains, 1992, Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ, Brain Res., 599, 223, 10.1016/0006-8993(92)90395-P
Chen, 2011, AT1 receptors in the paraventricular nucleus mediate the hyperthermia-induced reflex reduction of renal blood flow in rats, Am. J. Physiol. Regul. Integr. Comp. Physiol., 300, R479, 10.1152/ajpregu.00604.2010
Gao, 2005, Sympathoexcitation by central Ang II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM, Am. J. Physiol. Heart Circ. Physiol., 288, H2271, 10.1152/ajpheart.00949.2004
Gao, 2008, Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure, Hypertension, 52, 708, 10.1161/HYPERTENSIONAHA.108.116228
Head, 1996, Role of AT1 receptors in the central control of sympathetic vasomotor function, Clin. Exp. Pharmacol. Physiol., 23, S93, 10.1111/j.1440-1681.1996.tb02820.x
Ito, 2002, Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats, Hypertension, 40, 552, 10.1161/01.HYP.0000033812.99089.92
Kleiber, 2010, Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure, Am. J. Physiol. Heart Circ. Physiol., 298, H1546, 10.1152/ajpheart.01006.2009
McKinley, 2003, The brain renin–angiotensin system: location and physiological roles, Int. J. Biochem. Cell Biol., 35, 901, 10.1016/S1357-2725(02)00306-0
Patel, 2011, Enhanced angiotensin II-mediated central sympathoexcitation in streptozotocin-induced diabetes: role of superoxide anion, Am. J. Physiol. Regul. Integr. Comp. Physiol., 300, R311, 10.1152/ajpregu.00246.2010
Wang, 2008, Sex differences in angiotensin signaling in bulbospinal neurons in the rat rostral ventrolateral medulla, Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, R1149, 10.1152/ajpregu.90485.2008
Zhu, 2004, Ang II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure, J Appl. Physiol., 97, 1746, 10.1152/japplphysiol.00573.2004
Liu, 1999, Regulation of sympathetic nerve activity in heart failure: a role for nitric oxide and angiotensin II, Circ. Res., 84, 417, 10.1161/01.RES.84.4.417
Zucker, 2001, The regulation of sympathetic outflow in heart failure, Neuro-Cardiovascular Regulation, 431
Gao, 2004, Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase, Circ. Res., 95, 937, 10.1161/01.RES.0000146676.04359.64
Liu, 2008, Role of oxidant stress on AT1 receptor expression in neurons of rabbits with heart failure and in cultured neurons, Circ. Res., 103, 186, 10.1161/CIRCRESAHA.108.179408
Guggilam, 2011, Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide, Basic Res. Cardiol., 106, 273, 10.1007/s00395-010-0146-8
Huang, 2011, Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone, Exp. Physiol., 96, 1028, 10.1113/expphysiol.2011.059840
Zhu, 2004, AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure, Am. J. Physiol. Heart Circ. Physiol., 287, H1828, 10.1152/ajpheart.01245.2003
Wang, 2012, Angiotensin II, sympathetic nerve activity and chronic heart failure, Heart Fail. Rev.
Yoshimura, 2000, Increased brain angiotensin receptor in rats with chronic high-output heart failure, J. Card. Fail., 6, 66, 10.1016/S1071-9164(00)00013-0
DiBona, 1995, Ang II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure, Am. J. Physiol. Regul. Integr. Comp. Physiol., 269, R1189, 10.1152/ajpregu.1995.269.5.R1189
Zhang, 1999, Brain renin–angiotensin system and sympathetic hyperactivity in rats after myocardial infarction, Am. J. Physiol. Heart Circ. Physiol., 276, H1608, 10.1152/ajpheart.1999.276.5.H1608
Wang, 2004, Prevention of sympathetic and cardiac dysfunction after myocardial infarction in transgenic rats deficient in brain angiotensinogen, Circ. Res., 94, 843, 10.1161/01.RES.0000120864.21172.5A
Liu, 2006, Neuronal angiotensin II type 1 receptor upregulation in heart failure: activation of activator protein 1 and Jun N-terminal kinase, Circ. Res., 99, 1004, 10.1161/01.RES.0000247066.19878.93
Liu, 2000, Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: a role for angiotensin II, Circulation, 102, 1854, 10.1161/01.CIR.102.15.1854
Mitra, 2011, Convergence of p38MAPK pathway and nuclear signals involving NFκB/CREB following Ang II stimulation in neurons, FASEB J., 25, 843.16
Kang, 2009, Brain nuclear factor-κB activation contributes to neurohumoral excitation in angiotensin II-induced hypertension, Cardiovasc. Res., 82, 503, 10.1093/cvr/cvp073
Elks, 2009, Chronic NF-κB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR, Am. J. Physiol. Renal Physiol., 296, F298, 10.1152/ajprenal.90628.2008
Sumners, 1998, Neuronal ion channel signalling pathways: modulation by angiotensin II, Cell. Signal., 10, 303, 10.1016/S0898-6568(97)00133-2
Sumners, 1996, Angiotensin II type 1 receptor modulation of neuronal K+ and Ca2+ currents: intracellular mechanisms, Am. J. Physiol. Cell Physiol., 271, C154, 10.1152/ajpcell.1996.271.1.C154
Zhu, 1997, Modulation of K+ and Ca2+ currents in cultured neurons by an angiotensin II type 1a receptor peptide, Am. J. Physiol. Cell Physiol., 273, C1040, 10.1152/ajpcell.1997.273.3.C1040
Gao, 2010, Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure, Am. J. Physiol. Heart Circ. Physiol., 298, H945, 10.1152/ajpheart.00145.2009
Jin, 2010, KChIP2 attenuates cardiac hypertrophy through regulation of Ito and intracellular calcium signaling, J. Mol. Cell. Cardiol., 48, 1169, 10.1016/j.yjmcc.2009.12.019
Li, 2008, Regulation of Kv4 channel expression in failing rat heart by the thioredoxin system, Am. J. Physiol. Heart Circ. Physiol., 295, H416, 10.1152/ajpheart.91446.2007
Ozgen, 2012, Microtubules and angiotensin II receptors contribute to modulation of repolarization induced by ventricular pacing, Heart Rhythm, 9, 1865, 10.1016/j.hrthm.2012.07.014
Donoghue, 2000, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9, Circ. Res., 87, E1, 10.1161/01.RES.87.5.e1
Ferrario, 1988, A hypothesis regarding the function of angiotensin peptides in the brain, Clin. Exp. Hypertens. A, 10, 107
Ferreira, 2012, New cardiovascular and pulmonary therapeutic strategies based on the angiotensin-converting enzyme 2/angiotensin-(1–7)/mas receptor axis, Int. J. Hypertens., 2012, 147825
Feng, 2009, Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension, Circ. Res., 106, 373, 10.1161/CIRCRESAHA.109.208645
Xia, 2009, Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice, Hypertension, 53, 210, 10.1161/HYPERTENSIONAHA.108.123844
Shenoy, 2011, ACE2, a promising therapeutic target for pulmonary hypertension, Curr. Opin. Pharmacol., 11, 150, 10.1016/j.coph.2010.12.002
Zimmerman, 2012, Angiotensin-(1–7) in kidney disease: a review of the controversies, Clin. Sci., 123, 333, 10.1042/CS20120111
Qian, 2013, Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition, Oncol. Rep., 29, 2408, 10.3892/or.2013.2370
Gallagher, 2004, Inhibition of human lung cancer cell growth by angiotensin-(1–7), Carcinogenesis, 25, 2045, 10.1093/carcin/bgh236
Krishnan, 2013, Angiotensin-(1–7) attenuates metastatic prostate cancer and reduces osteoclastogenesis, Prostate, 73, 71, 10.1002/pros.22542
Doobay, 2007, Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system, Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, R373, 10.1152/ajpregu.00292.2006
Hamming, 2004, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 203, 631, 10.1002/path.1570
Xiao, 2011, Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure, Hypertension, 58, 1057, 10.1161/HYPERTENSIONAHA.111.176636
Zheng, 2011, Angiotensin-converting enzyme 2 overexpression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure, Am. J. Physiol. Heart Circ. Physiol., 301, H2402, 10.1152/ajpheart.00330.2011
Sharma, 2012, Nitric oxide inhibits the expression of AT1 receptors in neurons, Am. J. Physiol. Cell Physiol., 302, C1162, 10.1152/ajpcell.00258.2011
Potts, 2000, The cardiovascular effects of angiotensin-(1–7) in the rostral and caudal ventrolateral medulla of the rabbit, Brain Res., 877, 58, 10.1016/S0006-8993(00)02626-3
Silva, 2005, Blockade of endogenous angiotensin-(1–7) in the hypothalamic paraventricular nucleus reduces renal sympathetic tone, Hypertension, 46, 341, 10.1161/01.HYP.0000179216.04357.49
Xia, 2011, ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function, PLoS ONE, 6, e22682, 10.1371/journal.pone.0022682
Diz, 2008, Angiotensin-(1–7) and baroreflex function in nucleus tractus solitarii of (mRen2)27 transgenic rats, J. Cardiovasc. Pharmacol., 51, 542, 10.1097/FJC.0b013e3181734a54
Kar, 2011, Central angiotensin (1–7) enhances baroreflex gain in conscious rabbits with heart failure, Hypertension, 58, 627, 10.1161/HYPERTENSIONAHA.111.177600
Pina, 2003, Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention, Circulation, 107, 1210, 10.1161/01.CIR.0000055013.92097.40
Belardinelli, 1998, Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy, Circulation, 97, 553, 10.1161/01.CIR.97.6.553
Belardinelli, 1999, Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome, Circulation, 99, 1173, 10.1161/01.CIR.99.9.1173
Georgiou, 2001, Cost-effectiveness analysis of long-term moderate exercise training in chronic heart failure, Am. J. Cardiol., 87, 984, 10.1016/S0002-9149(01)01434-5
Belardinelli, 2001, Exercise training intervention after coronary angioplasty: the ETICA trial, J. Am. Coll. Cardiol., 37, 1891, 10.1016/S0735-1097(01)01236-0
Kitzman, 2010, Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial, Circ. Heart Fail., 3, 659, 10.1161/CIRCHEARTFAILURE.110.958785
Brubaker, 2009, Endurance exercise training in older patients with heart failure: results from a randomized, controlled, single-blind trial, J. Am. Geriatr. Soc., 57, 1982, 10.1111/j.1532-5415.2009.02499.x
Mousa, 2008, Exercise training enhances baroreflex sensitivity by an angiotensin II-dependent mechanism in chronic heart failure, J. Appl. Physiol., 104, 616, 10.1152/japplphysiol.00601.2007
Liu, 2002, Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure, J. Appl. Physiol., 92, 2403, 10.1152/japplphysiol.00039.2002
Haack, 2012, Parallel changes in neuronal AT1R and GRK5 expression following exercise training in heart failure, Hypertension, 60, 354, 10.1161/HYPERTENSIONAHA.112.195693
Roveda, 2003, The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial, J. Am. Coll. Cardiol., 42, 854, 10.1016/S0735-1097(03)00831-3
Antunes-Correa, 2010, Impact of gender on benefits of exercise training on sympathetic nerve activity and muscle blood flow in heart failure, Eur. J. Heart Fail., 12, 58, 10.1093/eurjhf/hfp168
de Mello Franco, 2006, Effects of home-based exercise training on neurovascular control in patients with heart failure, Eur. J. Heart Fail., 8, 851, 10.1016/j.ejheart.2006.02.009
Fraga, 2007, Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol, Eur. J. Heart Fail., 9, 630, 10.1016/j.ejheart.2007.03.003
Zheng, 2012, Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II, Am. J. Physiol. Regul. Integr. Comp. Physiol., 303, R387, 10.1152/ajpregu.00046.2012
Bertagnolli, 2008, Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats, Am. J. Hypertens., 21, 1188, 10.1038/ajh.2008.270
Gao, 2007, Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure, Circulation, 115, 3095, 10.1161/CIRCULATIONAHA.106.677989
Kishi, 2012, Exercise training causes sympathoinhibition through antioxidant effect in the rostral ventrolateral medulla of hypertensive rats, Clin. Exp. Hypertens., 34, 278, 10.3109/10641963.2012.681084
Wang, 2013, Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems, Curr. Neurovasc. Res., 10, 81, 10.2174/156720213804805963
Coats, 1992, Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function, Circulation, 85, 2119, 10.1161/01.CIR.85.6.2119
Kar, 2010, Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure, J. Appl. Physiol., 108, 923, 10.1152/japplphysiol.00840.2009
Evangelista, 2003, Duration-controlled swimming exercise training induces cardiac hypertrophy in mice, Braz. J. Med. Biol. Res., 36, 1751, 10.1590/S0100-879X2003001200018
Fernandes, 2011, Aerobic exercise training-induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1–7), Hypertension, 58, 182, 10.1161/HYPERTENSIONAHA.110.168252
Yang, 2011, Angiotensin-(1–7) increases neuronal potassium current via a nitric oxide-dependent mechanism, Am. J. Physiol. Cell Physiol., 300, C58, 10.1152/ajpcell.00369.2010
Xiao, 2013, Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling, Am. J. Physiol. Cell Physiol., 304, C1073, 10.1152/ajpcell.00364.2012
Burrell, 2012, Chronic kidney disease: cardiac and renal angiotensin-converting enzyme (ACE) 2 expression in rats after subtotal nephrectomy and the effect of ACE inhibition, Exp. Physiol., 97, 477, 10.1113/expphysiol.2011.063156
Sriramula, 2013, Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension, PLoS ONE, 8, e63847, 10.1371/journal.pone.0063847
Wakahara, 2007, Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio, Endocrinology, 148, 2453, 10.1210/en.2006-1287
Zhang, 2009, Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells, Am. J. Physiol. Lung Cell. Mol. Physiol., 297, L631, 10.1152/ajplung.90415.2008
Higuchi, 2007, Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology, Clin. Sci., 112, 417, 10.1042/CS20060342
Oppermann, 1996, Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C, J. Biol. Chem., 271, 13266, 10.1074/jbc.271.22.13266
Kim, 2005, Functional antagonism of different G protein-coupled receptor kinases for β-arrestin-mediated angiotensin II receptor signaling, Proc. Natl. Acad. Sci. U.S.A., 102, 1442, 10.1073/pnas.0409532102
Grobe, 2008, An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy, Physiology, 23, 187, 10.1152/physiol.00002.2008