The calcified eggshell matrix proteome of a songbird, the zebra finch (Taeniopygia guttata)
Tóm tắt
The proteins of avian eggshell organic matrices are thought to control the mineralization of the eggshell in the shell gland (uterus). Proteomic analysis of such matrices identified many candidates for such a role. However, all matrices analyzed to date come from species of one avian family, the Phasianidae. To analyze the conservation of such proteins throughout the entire class Aves and to possibly identify a common protein toolkit enabling eggshell mineralization, it is important to analyze eggshell matrices from other avian families. Because mass spectrometry-based in-depth proteomic analysis still depends on sequence databases as comprehensive and accurate as possible, the obvious choice for a first such comparative study was the eggshell matrix of zebra finch, the genome sequence of which is the only songbird genome published to date. The zebra finch eggshell matrix comprised 475 accepted protein identifications. Most of these proteins (84 %) were previously identified in species of the Phasianidae family (chicken, turkey, quail). This also included most of the so-called eggshell-specific proteins, the ovocleidins and ovocalyxins. Ovocleidin-116 was the second most abundant protein in the zebra finch eggshell matrix. Major proteins also included ovocalyxin-32 and -36. The sequence of ovocleidin-17 was not contained in the sequence database, but a presumptive homolog was tentatively identified by N-terminal sequence analysis of a prominent 17 kDa band. The major proteins also included three proteins similar to ovalbumin, the most abundant of which was identified as ovalbumin with the aid of two characteristic phosphorylation sites. Several other proteins identified in Phasianidae eggshell matrices were not identified. When the zebra finch sequence database contained a sequence similar to a missing phasianid protein it may be assumed that the protein is missing from the matrix. This applied to ovocalyxin-21/gastrokine-1, a major protein of the chicken eggshell matrix, to EDIL3 and to lactadherin. In other cases failure to identify a particular protein may be due to the absence of this protein from the sequence database, highlighting the importance of better, more comprehensive sequence databases. The results indicate that ovocleidin-116, ovocleidin-17, ovocalyxin-36 and ovocalyxin-32 may be universal avian eggshell-mineralizing proteins. All the more important it is to elucidate the role of these proteins at the molecular level. This cannot be achieved by proteomic studies but will need application of other methods, such as atomic force microscopy or gene knockouts. However, it will also be important to analyze more eggshell matrices of different avian families to unequivocally identify other mineralization toolkit proteins apart from ovocleidins and ovocalyxins. Progress in this respect will depend critically on the availability of more, and more comprehensive, sequence databases. The development of faster and cheaper nucleotide sequencing methods has considerably accelerated genome and transcriptome sequencing, but this seems to concur with frequent publication of incomplete and fragmented sequence databases.
Tài liệu tham khảo
Solomon SE. The eggshell: strength, structure and function. Brit Poult Sci. 2010;51 Suppl 1:52–9.
Hincke MT, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD. The eggshell: structure, composition and mineralization. Front Biosci. 2012;17:1266–120.
Rodriguez-Navarro AB, Marie P, Nys Y, Hincke MT, Gautron J. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. J Struct Biol. 2015;190:291–303.
Nys Y, Hincke MT, Arias JL, Garcia-Ruiz JM, Solomon SE. Avian eggshell mineralization. Poult Avian Biol Rev. 1999;10:143–66.
Nys Y, Gautron J, McKee MD, Garcia-Ruiz JM, Hincke MT. Biochemical and functional characterization of eggshell matrix proteins in hens. World’s Poult Sci J. 2001;57:401–13.
Arias JL, Fernandez MS. Role of extracellular matrix molecules in shell formation and structure. World’s Poult Sci J. 2001;57:349–57.
Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol. 2004;3:549–62.
Rose MLH, Hincke MT. Protein constituents of the eggshell: eggshell-specific matrix proteins. Cell Mol Life Sci. 2009;66:2707–19.
Hincke MT, Nys Y, Gautron J. The role of matrix proteins in eggshell formation. J Poult Sci. 2010;47:208–19.
Hincke MT. Ovalbumin is a component of the chicken eggshell matrix. Connect Tissue Res. 1995;31:227–33.
Hincke MT, Gautron J, Panhéleux M, Garcia-Ruiz J, McKee MD, Nys Y. Identification of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol. 2000;19:443–53.
Gautron J, Hincke MT, Panhéleux M, Garcia-Ruiz JM, Boldicke T, Nys Y. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. Connect Tissue Res. 2001;42:255–67.
Réhault-Godbert S, Labas V, Helloin E, Hervé-Grépinet V, Slugocki C, Berges M, et al. Ovalbumin-related protein X is a heparin-binding Ov-serpin exhibiting antimicrobial activities. J Biol Chem. 2013;288:17285–95.
Hincke MT, Tsang CPW, Courtney M, Hill V, Narbaitz R. Purification and immunochemistry of a soluble matrix protein of the chicken eggshell (ovocleidin-17). Calcified Tissue Int. 1995;56:578–83.
Mann K, Siedler F. The amino acid sequence of ovocleidin-17, a major protein of the avian eggshell calcified layer. Biochem Mol Biol Int. 1999;47:997–1007.
Marin-Garcia L, Frontana-Uribe BA, Reyes-Grajeda JP, Stojanoff V, Serrano-Posada HJ, Moreno A. Chemical recognition of carbonate anions by proteins involved in biomineralization processes and their influence on calcite crystal growth. Crystal Growth Design. 2008;8:1340–5.
Hernández-Hernández A, Gómez-Morales J, Rodríguez-Navarro AB, Gautron J, Nys Y, García-Ruiz JM. Identification of some active proteins in the process of hen eggshell formation. Crystal Growth Design. 2008;8:4330–9.
Wellman-Labadie O, Lakshminarayanan R, Hincke MT. Antimicrobial properties of avian eggshell-specific C-type lectin-like proteins. FEBS Lett. 2008;582:699–704.
Hincke MT, Gautron J, Tsang CPW, McKee MD, Nys Y. Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116. J Biol Chem. 1999;46:32915–23.
Kawasaki K, Weiss KM. Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the decretory calcium-binding phosphoprotein family. J Exp Zool (Mol Dev Evol). 2006;306B:295–316.
Rowe PSN. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct. 2012;30:355–75.
Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralization and bone remodeling. J Endocrinol. 2012;214:241–55.
Gautron J, Murayama E, Vignal A, Morisson M, McKee MD, Réhault S, et al. Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins and Plunc family proteins. J Biol Chem. 2007;282:5273–86.
Gautron J, Réhault-Godbert S, Pascal G, Nys Y, Hincke MT. Ovocalyxin-36 and other LBP/BPI/Plunc-like proteins as molecular actors of the mechanisms of the avian egg natural defences. Biochem Soc Trans. 2011;39:971–6.
Cordeiro CMM, Esmaili H, Ansah G, Hincke MT. Ovocalyxin-36 is a pattern recognition protein in chicken eggshell membranes. PLoS ONE. 2013;8:e84112.
Kovacs-Nolan J, Cordeiro C, Young D, Mine Y, Hincke MT. Ovocalyxin-36 is an effector protein modulating the production of proinflammatory mediators. Vet Immunol Immunopathol. 2014;160:1–11.
Gautron J, Hincke MT, Mann K, Panhéleux M, Bain M, McKee MD, et al. Ovocalyxin-32, a novel chicken eggshell matrix protein. Isolation, amino acid sequencing, cloning and immunohistochemical localization. J Biol Chem. 2001;42:39243–52.
Gautron J, Nys Y. Eggshell matrix proteins. In: Huopalahti R, Lopez-Fandino R, Anton M, Schade R, editors. Bioactive egg compounds. Berlin: Springer; 2007. p. 103–8.
International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Science. 2004;432:695–716.
Mann K, Maček B, Olsen JV. Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics. 2006;6:3801–10.
Mann K, Olsen JV, Maček B, Gnad F, Mann M. Phosphoproteins of the chicken eggshell calcified layer. Proteomics. 2007;7:106–15.
Mikšik I, Eckhardt A, Sedláková P, Mikulíková K. Proteins of insoluble matrix of avian (Gallus gallus) eggshell. Connect Tissue Res. 2007;48:1–8.
Mikšik I, Sedláková P, Lacinová K, Pataridis S, Eckhardt A. Determination of insoluble avian eggshell matrix proteins. Anal Bioanal Chem. 2010;397:205–14.
Rose-Martel M, Du J, Hincke MT. Proteomic analysis provides new insight into the eggshell cuticle. J Proteom. 2012;75:2697–706.
Mikšík I, Ergang P, Pácha J. Proteomic analysis of chicken eggshell cuticle membrane layer. Anal Bioanal Chem. 2014;406:7633–40.
Rose-Martel M, Smiley S, Hincke MT. Novel identification of matrix proteins involved in calcitic biomineralization. J Proteomics. 2015;116:81–96.
Cordeiro CMM, Hincke MT. Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. J Proteomics. 2015, in press; http://dx.doi.org/10.1016/j.jprot.2015.08.014.
Sun C, Xu G, Yang N. Differential label-free quantitative proteomic analysis of avian eggshell matrix and uterine fluid proteins associated with eggshell mechanical property. Proteomics. 2013;13:3523–36.
Marie P, Labas V, Brionne A, Harichaux G, Hennequet-Antier C, Nys Y, et al. Quantitative proteomics and bioinformatics analysis provide new insight into protein function during avian eggshell biomineralization. J Proteomics. 2015;113:178–93.
Marie P, Labas V, Brionne A, Harichaux G, Hennequet-Antier C, Rodrigues-Navarro AB, et al. Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during primary events of mineralization and the active calcification phase. J Proteomics. 2015;126:140–54.
Dunn IC, Wilson PW, Lu Z, Bain MM, Crossan CL, Talbot RT, et al. New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens. Gen Comp Endocr. 2009;163:225–32.
Jonchère V, Réhault-Godbert S, Hennequet-Antier C, Cabau C, Sibut V, Cogburn LA, et al. Gene expression profiling to identify eggshell proteins involved in physical defence of the chicken egg. BMC Genomics. 2010;11:57.
Jonchère V, Brionne A, Gautron J, Nys Y. Identification of uterine ion transporters for mineralization precursors of the avian eggshell. BMC Physiol. 2012;12:10.
Fan Y-F, Hou Z-C, Xu YG-Q, G-Y YN. The sodium channel gene family is specifically expressed in hen uterus and associated with eggshell quality traits. BMC Genet. 2013;14:90.
Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minnerals or in the shell mineralization process. BMC Genomics. 2014;15:220.
Zhang Q, Zhu F, Liu L, Zheng CW, Wang DH, Hou ZC, et al. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities. PLoS One. 2015;10:e0125890.
Panhéleux M, Bain M, Fernandez MS, Morales I, Gautron J, Arias JL, et al. Organic matrix composition and ultrastructure of eggshell: a comparative study. Brit Poult Sci. 1999;40:240–52.
Lakshminarayanan R, Loh XJ, Gayathri S, Sindhu S, Banerjee Y, Kini RM, et al. Formation of transient amorphous calcium carbonate precursor in quail eggshell mineralization: an in vitro study. Biomacromolecules. 2006;7:3202–9.
Portugal SJ, Cooper HJ, Zampronio CG, Wallace LL, Cassey P. Can museum egg specimens be used for proteomic analysis? Protein Sci. 2010;8:40.
Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LE, et al. Multi-Platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): Genome Assembly and analysis. PLoS Biol. 2010;8:e1000475.
Kawahara-Miki R, Sano S, Nunome M, Shimmura T, Kuwayama T, Takahashi S, et al. Next-generation sequencing reveals genomic features of Japanese quail. Genomics. 2013;101:345–53.
Mann K, Mann M. The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. Proteome Sci. 2013;11:40.
Mann K, Mann M. Proteomic analysis of quail calcified eggshell matrix: a comparison to chicken and turkey eggshell proteomes. Proteome Sci. 2015;13:22.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, et al. The genome of a songbird. Nature. 2010;464:757–62.
Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763–8.
Jarvis ED, Mirab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analysis resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–31.
Ihle M, Kempenaers B, Forstmeier W. Does hatching failure breed infidelity? Behav Ecol. 2012;24:119–27.
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protocols. 2007;2:1896–906.
Michalski A, Damoc E, Hauschild J-P, Lange O, Wieghaus A, Makarov A, et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics. 2011;10:1–11.
Scheltema RA, Mann M. SprayQc: A real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components. J Proteome Res. 2012;11:3458–66.
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature Biotechnol. 2009;26:1367–72.
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda – a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.
Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics. 2015;15:1453–6.
Neuhauser N, Michalski A, Cox J, Mann M. Expert system for computer-assisted annotation of MS/MS spectra. Mol Cell Proteom. 2012;11:1500–9.
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.
Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new bioinformatics analysis tools framework at EMBL-EBI (2010). Nucleic Acids Res. 2010;38(Suppl):W695–9.
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.
Altschul SF, Thomas TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1977;25:3389–402.
Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2011;40:D306–12.
Eisenhaber B, Bork P, Eisenhaber F. Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng. 1998;11:1155–61.
Petersen TN, Brunak S, von Heinje G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
Blom N, Gammeltoft S, Brunak S. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294:1351–62.
Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4:1633–49.
Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota SG, Pandey A. A compendium of curated phosphorylation-based substrate and binding motifs. Nature Biotech. 2007;25:285–6.
Cusack M, Fraser AC. Eggshell membrane removal for subsequent extraction of intermineral and intramineral proteins. Cryst Growth Design. 2002;2:529–32.
Reyes-Grajeda JP, Moreno A, Romero A. Crystal structure of ovocleidin-17, a major protein of the calcified Gallus gallus eggshell. Implications in the calcite mineral growth pattern. J Biol Chem. 2004;279:40876–81.
Freeman CL, Harding JH, Quigley D, Rodger PM. Simulations of ovocleidin-17 binding to calcite surfaces and its implications for eggshell formation. J Phys Chem. 2011;115:8175–83.
Freeman CL, Harding JH, Quigley D, Rodger PM. Protein binding on stepped calcite surfaces: simulations of ovocleidin-17 on calcite {31.16} and {31.8}. Phys Chem Chem Phys. 2012;14:7287–95.
Freeman CL, Harding JH, Quigley D, Rodger PM. How does an amorphous surface influence molecular binding? Ovocleidin-17 and amorphous calcium carbonate. Phys Chem Chem Phys. 2015;17:17494–500.
Zhang Q, Liu L, Zhu F, Ning Z, Hincke MT, Yang N, et al. Integrating de novo transcriptome assembly and cloning to obtain chicken ovocleidin-17 full-length cDNA. PloS One. 2014;9:e93452.
Lakshminarayanan R, Valiyaveetil S, Rao VS, Kini RM. Purification, characterization, and in vitro mineralization studies of a novel goose eggshell matrix protein, ansocalcin. J Biol Chem. 2003;278:2928–36.
Mann K, Siedler F. Ostrich (Struthio camelus) eggshell contains two different C-type lectin-like proteins. Isolation, amino acid sequence, and post-translational modifications. Biochim Biophys Acta. 2004;1696:41–50.
Mann K, Siedler F. Amino acid sequences and phosphophorylation sites of emu and rhea eggshell C-type lectin-like proteins. Comp Biochem Physiol B. 2006;143:160–70.
Horvat-Gordon M, Yu F, Burns D, Leach RM. Ovocleidin (OC-116) is present in avian skeletal tissues. Poult Sci. 2008;87:1618–23.
Bardet C, Vincent C, Lajarille M-C, Jaffredo T, Sire J-Y. OC-116, the chicken ortholog of mammalian MEPE found in eggshell, is also expressed in bone cells. J Exp Zool. 2010;314B:653–62.
Bain MM, McDade K, Burchmore R, Law A, Wilson PW, Schmutz M, et al. Enhancing the egg’s natural defence against bacterial penetration by increasing cuticle deposition. Anim Genet. 2013;44:661–8.
Dunn IC, Joseph NT, Bain M, Edmond A, Wilson PW, Milona P, et al. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurements in pedigree Rhode Island Red hens. Anim Genet. 2009;40:110–4.
Takahashi H, Sasaki O, Nirasawa K, Furukawa T. Association between ovocalyxin-32 gene haplotypes and eggshell quality traits in an F2 intercross between two chicken lines divergently selected for eggshell strength. Animal Genet. 2010;41:541–4.
Dunn IC, Rodrıguez-Navarro AB, Mcdade K, Schmutz M, Preisinger R, Waddington D, et al. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers. Anim Genet. 2012;43:410–8.
Henderson JY, Moir AJG, Fothergill LA, Fothergill JE. Sequences of sixteen phosphoserine peptides from ovalbumins of eight species. Eur J Biochem. 1981;114:439–50.
Pipich V, Balz M, Wolf SE, Tremel W, Schwahn D. Nucleation and growth of CaCO3 mediated by the egg-white protein ovalbumin: A time-resolved in situ study using small-angle neutron scattering. J Am Chem Soc. 2008;130:6879–92.
Wang X, Wu C, Tao K, Zhao K, Wang J, Xu H, et al. Influence of ovalbumin on CaCO3 precipitation during in vitro biomineralization. J Phys Chem B. 2010;114:5301–8.
Wolf SE, Leiterer J, Pipich V, Barrea R, Emmerling F, Tremel W. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of ‚Polymer-induced liquid precursor‘processes. J Am Chem Soc. 2011;133:12642–9.
Whenham N, Wilson PW, Bain MM, Stevenson L, Dunn IC. Comparative biology and expression of Tenp, an egg protein related to the bacterial permeability-increasing family of proteins. Gene. 2014;538:99–108.
Yan R-T, Wang S-Z. Identification and characterization of tenp, a gene transiently expressed before overt cell differentiation during neurogenesis. J Neurobiol. 1998;34:319–28.
Guérin-Dubiard C, Pasco M, Mollé D, Désert C, Croguennec T, Nau F. Proteomic analysis of hen egg white. J Agric Food Chem. 2006;54:3901–10.
Maehashi K, Ueda M, Matano M, Takeuchi J, Uchino M, Kashiwagi Y, et al. Biochemical and functional characterization of transiently expressed in neuronal precursor (TENP) protein in emu egg white. J Agric Food Chem. 2014;62:5156–62.
Mann K, Mann M. The chicken egg yolk plasma and granule proteomes. Proteomics. 2008;8:178–91.
Mann K. Proteomic analysis of the chicken egg vitelline membrane. Proteomics. 2008;8:2322–32.
Mine Y, Kovacs-Nolan J. New insights in biologically active proteins and peptides derived from hen egg. World’s Poult Sci J. 2006;62:87–95.
Mine Y. Egg proteins and peptides in human health – chemistry, bioactivity and production. Curr Pharm Design. 2007;13:875–84.
Le Roy N, Jackson DJ, Marie B, Ramos-Silva P, Marin F. The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization. Front Zool. 2014;11:75.
Huebner AK, Keller J, Catala-Lehnen P, Perkovic S, Streichert T, Emeson RB, et al. The role of calcitonin and a-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys. 2008;473:210–7.
Burns DM, Forstrom JM, Friday KE, Howard GA, Roos BA. Procalcitonin’s amino-terminal cleavage peptide is a bone-cell mitogen. Proc Natl Acad Sci U S A. 1989;86:9519–23.
Hassager C, Bonde SK, Anderson MA, Rink H, Spelsberg TC, Riggs BL. Procalcitonin NH2-terminal cleavage peptide has no mitogenic effect on normal human osteoblast-like cells. J Bone Miner Res. 1991;6:489–93.
Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19:615–22.
Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11:279–303.
Chien Y-C, Hincke MT, Vali H, McKee MD. Ultrastructural matrix-mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro. J Struct Biol. 2008;163:84–99.
Mann K, Gautron J, Nys Y, McKee MD, Bajari T, Schneider WJ, et al. Disulfide-linked clusterin is a component of the chicken eggshell matrix and egg white. Matrix Biol. 2003;22:397–407.
Nagaraj N, D’Sousa RCJ, Cox J, Olsen JV, Mann M. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res. 2010;9:6786–94.
Mann K, Edsinger E. The Lottia gigantea shell matrix proteome: re-analysis including MaxQuant iBAQ quantitation and phosphoproteome analysis. Proteome Sci. 2014;12:28.
Veis A, Sfeir C, Wu CB. Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity. Crit Rev Oral Biol Med. 1997;8:360–79.
George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev. 2008;108:4670–93.
Alvares K. The role of acidic phosphoproteins in biomineralization. Connect Tissue Res. 2014;55:34–40.
Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One. 2012;7:e42988.
Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates proteins that regulate biomineralization. Science. 2012;336:1150–3.
Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J, et al. A single kinase generates the majority of the secreted phosphoproteome. Cell. 2015;161:1619–32.
Hendley CT, Tao J, Kunitake JAMR, De Yoreo JJ, Estroff LA. Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull. 2015;40:480–9.
Schusser B, Collarini EJ, Yi H, Mettler Izquierdo S, Fesler J, Pedersen D, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci U S A. 2013;110:20170–5.
Park TS, Lee HJ, Kim KH, Kim J-S, Han JY. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci U S A. 2014;111:12716–21.
Glazer L, Roth Z, Weil S, Aflalo ED, Khalaila I, Sagi A. Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65. J Proteomics. 2015;128:333–43.
Dunham WH, Mullin M, Gingras A-C. Affinity purification coupled to mass spectrometry: Basic principles and strategies. Proteomics. 2012;12:1576–90.
Bernaudo F, Monteleone F, Mesuraca M, Krishnan S, Chiarella E, Scicchitano S, et al. Validation of a novel shotgun proteomic workflow for the discovery of protein-protein interactions: Focus on ZNF521. J Proteome Res. 2015;14:1888–99.
Rappsilber J. The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol. 2011;173:530–40.
Erba EB, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci. 2015;24:1176–92.
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci. 2015;24:1193–209.