The biological importance of measuring individual variation

Journal of Experimental Biology - Tập 210 Số 9 - Trang 1613-1621 - 2007
D. L. Crawford1, Marjorie F. Oleksiak1
1Rosenstiel School of Marine and Atmospheric Sciences, Marine Biology and Fisheries, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.

Tóm tắt

SUMMARY Functional genomics research using Fundulus heteroclitus has focused on variation among individuals because of the evolutionary importance and value of Fundulus in explaining the human condition (why individual humans are different and are affected differently by stress,disease and drugs). Among different populations and species of Fundulus, there are evolutionarily adaptive differences in gene expression. This natural variation in gene expression seems to affect cardiac metabolism because up to 81% of the variation in glucose utilization observed in isolated heart ventricles is related to specific patterns of gene expression. The surprising result from this research is that among different groups of individuals, the expression of mRNA from different metabolic pathways explains substrate-specific metabolism. For example, variation in oxidative phosphorylation mRNAs explains glucose metabolism for one group of individuals but expression of glucose metabolism genes explains this metabolism in a different group of individuals. This variation among individuals has important implications for studies using inbred strains:conclusions based on one individual or one strain will not necessarily reflect a generalized conclusion for a population or species. Finally, there are surprisingly strong positive and negative correlations among metabolic genes,both within and between pathways. These data suggest that measures of mRNA expression are meaningful, yet there is a complexity in how gene expression is related to physiological processes.

Từ khóa


Tài liệu tham khảo

Brem, R. B. and Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. USA102,1572-1577.

Brem, R. B., Storey, J. D., Whittle, J. and Kruglyak, L.(2005). Genetic interactions between polymorphisms that affect gene expression in yeast. Nature436,701-703.

Caceres, M. (2003). Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA100,13030.

Cavalieri, D., Townsend, J. P. and Hartl, D. L.(2000). Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc. Natl. Acad. Sci. USA97,12369-12374.

Chesler, E. J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu,H. C., Mountz, J. D., Baldwin, N. E., Langston, M. A. et al.(2005). Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet.37,233-242.

Cheung, V. G., Conlin, L. K., Weber, T. M., Arcaro, M., Jen, K. Y., Morley, M. and Spielman, R. S. (2003a). Natural variation in human gene expression assessed in lymphoblastoid cells. Nat. Genet.33,422-425.

Cheung, V. G., Jen, K. Y., Weber, T., Morley, M., Devlin, J. L.,Ewens, K. G. and Spielman, R. S. (2003b). Genetics of quantitative variation in human gene expression. Cold Spring Harb. Symp. Quant. Biol.68,403-407.

Clark, A. G. and Wang, L. (1997). Epistasis in measured genotypes: Drosophila P-element insertions. Genetics147,157-163.

Crawford, D. L., Pierce, V. A. and Segal, J. A.(1999a). Evolutionary physiology of closely related taxa:analyses of enzyme expression. Am. Zool.39,389-400.

Crawford, D. L., Segal, J. A. and Barnett, J. L.(1999b). Evolutionary analysis of TATA-less proximal promoter function. Mol. Biol. Evol.16,194-207.

Cui, X., Affourtit, J., Shockley, K. R., Woo, Y. and Churchill,G. A. (2006). Inheritance patterns of transcript levels in f1 hybrid mice. Genetics174,627-637.

Denver, D. R., Morris, K., Streelman, J. T., Kim, S. K., Lynch,M. and Thomas, W. K. (2005). The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans.Nat. Genet.37,544-548.

Doss, S., Schadt, E. E., Drake, T. A. and Lusis, A. J.(2005). Cis-acting expression quantitative trait loci in mice. Genome Res.15,681-691.

Enard, W. (2002). Intra- and interspecific variation in primate gene expression patterns. Science296, 340.

Farrell, A. P. (1993). Cardiovascular system. In The Physiology of Fishes (ed. D. H. Evans), pp.219-250. Boca Raton: CRC Press.

Feder, M. E. and Walser, J. C. (2005). The biological limitations of transcriptomics in elucidating stress and stress responses. J. Evol. Biol.18,901-910.

Ghazalpour, A., Doss, S., Sheth, S. S., Ingram-Drake, L. A.,Schadt, E. E., Lusis, A. J. and Drake, T. A. (2005). Genomic analysis of metabolic pathway gene expression in mice. Genome Biol.6,R59.

Gibson, G. and Weir, B. (2005). The quantitative genetics of transcription. Trends Genet.21,616-623.

Gilad, Y., Rifkin, S. A., Bertone, P., Gerstein, M. and White,K. P. (2005). Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Res.15,674.

Gilad, Y., Oshlack, A., Smyth, G. K., Speed, T. P. and White, K. P. (2006). Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature440, 242.

Jin, W., Riley, R. M., Wolfinger, R. D., White, K. P.,Passador-Gurgel, G. and Gibson, G. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster.Nat. Genet.29,389-395.

Khaitovich, P. (2004a). A neutral model of transcriptome evolution. PLoS Biol.2, e132.

Khaitovich, P. (2004b). Regional patterns of gene expression in human and chimpanzee brains. Genome Res.14,1462.

Lemos, B., Meiklejohn, C. D., Caceres, M. and Hartl, D. L.(2005). Rates of divergence in gene expression profiles of primates, mice and flies: stabliizing selection and variability among functional categories. Evolution59,126-137.

Monks, S. A., Leonardson, A., Zhu, H., Cundiff, P., Pietrusiak,P., Edwards, S., Phillips, J. W., Sachs, A. and Schadt, E. E.(2004). Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet.75,1094-1105.

Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L., Ewens,K. G., Spielman, R. S. and Cheung, V. G. (2004). Genetic analysis of genome-wide variation in human gene expression. Nature430,743-747.

Nadeau, J. H. and Topol, E. J. (2006). The genetics of health. Nat. Genet.38,1095-1098.

Nuzhdin, S. V., Wayne, M. L., Harmon, K. L. and McIntyre, L. M. (2004). Common pattern of evolution of gene expression level and protein sequence in Drosophila.Mol. Biol. Evol.21,1308-1317.

Oleksiak, M. F., Churchill, G. A. and Crawford, D. L.(2002). Variation in gene expression within and among natural populations. Nat. Genet.32,261-266.

Oleksiak, M. F., Roach, J. L. and Crawford, D. L.(2005). Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus.Nat. Genet.37, 67-72.

Pierce, V. A. and Crawford, D. L. (1997a). Phylogenetic analysis of glycolytic enzyme expression. Science276,256-259.

Podrabsky, J. E., Javillonar, C., Hand Steven, C. and Crawford,D. L. (2000). Intraspecific variation in aerobic metabolism and glycolytic enzyme expression in heart ventricles. Am. J. Physiol.279,R2344-R2348.

Pritchard, C. C., Hsu, L., Delrow, J. and Nelson, P. S.(2001). Project normal: defining normal variance in mouse gene expression. Proc. Natl. Acad. Sci. USA98,13266-13271.

Ronald, J., Brem, R. B., Whittle, J. and Kruglyak, L.(2005). Local Regulatory Variation in Saccharomyces cerevisiae.PLoS Genet.1,e25.

Schadt, E. E., Monks, S. A., Drake, T. A., Lusis, A. J., Che,N., Colinayo, V., Ruff, T. G., Milligan, S. B., Lamb, J. R., Cavet, G. et al. (2003). Genetics of gene expression surveyed in maize,mouse and man. Nature422,297-302.

Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S.,Guhathakurta, D., Sieberts, S. K., Monks, S., Reitman, M., Zhang, C. et al. (2005). An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet.37,710-717.

Segrè, D., DeLuna, A., Church, G. M. and Kishony, R.(2005). Modular epistasis in yeast metabolism. Nat. Genet.37,77-83.

Sharma, A., Sharma, V. K., Horn-Saban, S., Lancet, D.,Ramachandran, S. and Brahmachari, S. K. (2005). Assessing natural variations in gene expression in humans by comparing with monozygotic twins using microarrays. Physiol. Genomics21,117-123.

Stamatoyannopoulos, J. A. (2004). The genomics of gene expression. Genomics84,449-457.

Tan, Q., Christensen, K., Christiansen, L., Frederiksen, H.,Bathum, L., Dahlgaard, J. and Kruse, T. A. (2005). Genetic dissection of gene expression observed in whole blood samples of elderly Danish twins. Hum. Genet.117,267-274.

Townsend, J. P., Cavalieri, D. and Hartl, D. L.(2003). Population genetic variation in genome-wide gene expression. Mol. Biol. Evol.20,955-963.

Wang, M. H., Lazebny, O., Harshman, L. G. and Nuzhdin, S. V.(2004). Environment-dependent survival of Drosophila melanogaster: a quantitative genetic analysis. Aging Cell3,133-140.

Wayne, M. L. and McIntyre, L. M. (2002). Combining mapping and arraying: an approach to candidate gene identification. Proc. Natl. Acad. Sci. USA99,14903-14906.

Wayne, M. L., Pan, Y. J., Nuzhdin, S. V. and McIntyre, L. M.(2004). Additivity and trans-acting effects on gene expression in male Drosophila simulans.Genetics168,1413-1420.

Whitehead, A. and Crawford, D. (2005). Variation in tissue-specific gene expression among natural populations. Genome Biol.6,R13.1-R13.14.

Whitehead, A. and Crawford, D. L. (2006a). Neutral and adaptive variation in gene expression. Proc. Natl. Acad. Sci. USA103,5425-5430.

Whitehead, A. and Crawford, D. L. (2006b). Variation within and among species in gene expression: raw material for evolution. Mol. Ecol.15,1197-1211.

Yvert, G., Brem, R. B., Whittle, J., Akey, J. M., Foss, E.,Smith, E. N., Mackelprang, R. and Kruglyak, L. (2003). Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet.35, 57-64.