The biological basis of injury and neuroprotection in the fetal and neonatal brain

International Journal of Developmental Neuroscience - Tập 29 Số 6 - Trang 551-563 - 2011
Sandra Rees1, Richard Harding2, David W. Walker3
1Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Vic. 3010, Australia
2Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
3Monash Institute of Medical Research Melbourne Vic. 3168 Australia

Tóm tắt

Abstract

A compromised intrauterine environment that delivers low levels of oxygen and/or nutrients, or is infected or inflammatory, can result in fetal brain injury, abnormal brain development and in cases of chronic compromise, intrauterine growth restriction. Preterm birth can also be associated with injury to the developing brain and affect the normal trajectory of brain growth. This review will focus on the effects that episodes of perinatal hypoxia (acute, chronic, associated with inflammation or as an antecedent of preterm birth) can have on the developing brain. In animal models of these conditions we have found that relatively brief (acute) periods of fetal hypoxemia can have significant effects on the fetal brain, for example death of susceptible neuronal populations (cerebellum, hippocampus, cortex) and cerebral white matter damage. Chronic placental insufficiency which includes fetal hypoxemia, nutrient restriction and altered endocrine status can result in fetal growth restriction and long‐term deficits in neural connectivity in addition to altered postnatal function, for example in the auditory and visual systems. Maternal/fetal inflammation can result in fetal brain damage, particularly but not exclusively in the white matter; injury is more pronounced when associated with fetal hypoxemia. In the baboon, in which the normal trajectory of growth is affected by preterm birth, there is a direct correlation between a higher flux in oxygen saturation and a greater extent of neuropathological damage. Currently, the only established therapy for neonatal encephalopathy in full term neonates is moderate hypothermia although this only offers some protection to moderately but not severely affected brains. There is no accepted therapy for injured preterm brains. Consequently the search for more efficacious treatments continues; we discuss neuroprotective agents (erythropoietin, N‐acetyl cysteine, melatonin, creatine, neurosteroids) which we have trialed in appropriate animal models. The possibility of combining hypothermia with such agents or growth factors is now being considered. A deeper understanding of causal pathways in brain injury is essential for the development of efficacious strategies for neuroprotection.

Từ khóa


Tài liệu tham khảo

Aher S., 2006, Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants (Review), Cochrane Database Syst. Rev., 3, CD004868

10.1067/S0022-3476(03)00419-0

10.1093/brain/124.1.60

10.1136/jnnp.2006.110858

10.1111/j.1750-3639.2010.00380.x

10.1056/NEJMoa0900854

10.1038/sj.jcbfm.9600344

10.1523/JNEUROSCI.18-16-06241.1998

10.1002/ana.20530

10.1177/08830738060210070101

10.1136/bmj.317.7172.1549

10.1016/j.jpeds.2006.01.043

10.1016/j.ajog.2005.06.082

10.1002/1531-8249(200004)47:4<511::AID-ANA15>3.0.CO;2-N

10.1542/peds.2005-3186

10.1111/j.1750-3639.2007.00107.x

10.1016/S0022-3476(88)80161-6

10.1113/jphysiol.2003.047928

10.1016/0002-9378(88)90567-4

10.1046/j.1471-4159.2000.0741968.x

10.2174/092986706778201675

10.1146/annurev.nutr.27.061406.093621

10.1542/peds.2008-2701

Bui B.V., 2002, Altered retinal function and structure after chronic placental insufficiency, Invest. Ophthalmol. Vis. Sci., 43, 805

10.1096/fj.00-0857fje

10.1203/01.PDR.0000115679.86566.C4

10.1038/nri2873

10.1016/j.siny.2010.02.002

10.1164/ajrccm.160.4.9810071

10.1016/S0140-6736(03)12658-X

10.1016/S1071-5576(03)00090-X

10.1203/00006450-200104000-00003

10.1203/00006450-199707000-00001

10.1016/0887-8994(95)00223-5

10.1203/01.PDR.0000169971.64558.5A

10.1161/01.STR.0000251445.94697.64

10.1523/JNEUROSCI.2816-03.2004

10.1093/jnen/63.12.1297

10.1016/j.expneurol.2004.06.003

10.1016/j.placenta.2009.12.028

10.1136/bjo.79.5.447

10.1097/AOG.0b013e3181a60495

10.1016/j.jsgi.2004.03.004

10.1093/jnen/63.11.1131

10.1203/00006450-200212000-00021

10.1016/j.jsgi.2005.12.003

10.1136/bmj.c363

10.1046/j.0953-816x.2001.01474.x

10.1542/peds.2007-2591

10.1523/JNEUROSCI.20-01-00034.2000

10.1523/JNEUROSCI.20-12-04389.2000

10.1034/j.1600-079X.2001.310409.x

10.1177/107155760100800303

Genc K., 2006, Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes, Physiol. Res., 55, 33, 10.33549/physiolres.930749

10.1111/j.1600-079X.2008.00649.x

10.1016/S0140-6736(05)17946-X

10.1056/NEJM200005183422007

10.1073/pnas.142287899

10.1097/GCO.0b013e3282f4ef9e

10.1203/00006450-199909000-00005

10.1203/PDR.0b013e31816c825c

10.1093/jnen/62.5.441

He J., 2004, Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury, Restor. Neurol. Neurosci., 22, 19

10.1042/bj3200595

10.1111/j.1469-8749.1999.tb00567.x

Hopkins R., 2000, The Neuropathology of Schizophrenia, 5, 10.1093/oso/9780192629074.003.0002

10.1159/000232562

10.1016/j.ajog.2007.06.035

Hutton L.C., 2009, Neuropathology and functional deficits in a model of birth asphyxia in the precocial spiny mouse (Acomys cahirinus), Dev. Neurosci., 31, 523, 10.1159/000251907

Inder T.E., 2003, White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term, Am. J. Neuroradiol., 24, 805

10.1542/peds.2004-0326

10.1159/000227293

10.1016/j.ajog.2007.10.790

10.1186/1471-213X-9-39

10.1203/00006450-200006000-00006

10.1093/brain/awn150

10.1016/j.ijdevneu.2010.07.233

10.1203/01.pdr.0000215045.91122.44

10.1113/jphysiol.2005.100768

10.1172/JCI118416

10.1053/siny.1999.0116

10.1016/S0140-6736(76)90890-4

10.1542/peds.2007-2711

10.1212/WNL.56.10.1278

10.1074/jbc.M105832200

Kelleher M.A., 2011, Sex‐dependent effect of a low neurosteroid environment and intrauterine growth restriction on fetal guinea pig brain development, J. Endocrinol., 208, 301

10.1016/j.earlhumdev.2004.10.012

10.1007/s00401-005-1077-6

10.1016/S0140-6736(08)60380-3

10.1002/ana.20557

10.1111/j.1651-2227.2002.tb01630.x

10.1203/PDR.0b013e3181998baf

10.1542/peds.2006-0653

Loeliger M., 2008, Developmental and neuropathological consequences of ductal ligation in the preterm baboon, Pediatr. Res., 65, 209, 10.1203/PDR.0b013e31818d6d0b

Loeliger M., 2011, Erythropoietin protects the developing retina in an ovine model of endotoxin‐induced retinal injury, Invest. Ophthalmol. Vis. Sci., 52, 2656, 10.1167/iovs.10-6455

10.1016/S0306-4522(02)00756-X

10.1167/iovs.07-0521

10.1136/bmj.319.7216.1054

10.1023/A:1022368915400

10.1203/00006450-199802000-00018

10.1016/S0920-9964(99)00041-9

10.1111/j.1469-8749.2008.03226.x

10.1016/j.ajog.2004.06.090

10.1007/978-1-4615-0135-0_9

10.1046/j.1460-9568.2003.02987.x

10.1111/j.1365-2826.2009.01949.x

10.1097/MOP.0b013e328336eb57

10.1007/s00018-007-7403-5

10.1016/j.pharmthera.2007.04.011

10.1159/000085993

10.1097/GRF.0b013e318187087c

10.1203/01.PDR.0000064905.64688.10

10.1067/mob.2001.108862

10.1016/0736-5748(90)90029-2

10.1016/j.jsgi.2006.02.011

10.1093/ilar.47.1.32

10.1542/peds.2003-1129-L

10.1016/j.pnpbp.2005.04.028

10.1152/japplphysiol.00990.2005

Peebles D.M., 2010, Antenatal magnesium sulphate, BMJ, 341, c6004, 10.1136/bmj.c6004

10.1016/S0002-9378(13)90484-1

10.1016/S0165-3806(00)00076-6

10.1007/s00401-007-0295-5

10.1016/S0140-6736(07)60030-0

Prass K., 2006, Improved reperfusion and neuroprotection by creatine in a mouse model of stroke, J. Cereb. Blood Flow Metab., 27, 452, 10.1038/sj.jcbfm.9600351

10.1038/sj.jcbfm.9600351

Probyn M.E., 2010, The anti‐inflammatory agent N‐acetyl cysteine exacerbates endotoxin‐induced hypoxemia and hypotension and induces polycythemia in the ovine fetus, Neonatology, 98, 118, 10.1159/000280385

Rees S., 1988, Structure of the fetal sheep brain in experimental growth retardation, J. Dev. Physiol., 10, 211

10.1097/00005072-199909000-00004

10.1097/NEN.0b013e3181d27138

10.1016/0736-5748(88)90052-4

10.1016/S0165-3806(97)81787-7

10.1016/S0378-5955(02)00312-X

10.1016/j.neuroscience.2004.07.047

10.1007/BF02253360

10.1523/JNEUROSCI.5200-05.2006

10.1002/ana.10365

10.1542/peds.2007-1987

10.1093/jn/133.5.1668S

10.1111/j.1753-4887.2007.tb00362.x

10.1016/j.ajog.2008.06.090

10.1016/0002-9378(95)91326-2

10.1038/nature04301

10.1177/1933719108317299

10.1023/A:1022443503883

10.1056/NEJMcps050929

10.1097/AOG.0b013e3181e90046

10.1073/pnas.051606598

10.1203/01.PDR.0000159571.50758.39

10.1016/j.brainresrev.2007.06.012

Stone T.W., 1993, Neuropharmacology of quinolinic and kynurenic acids, Pharmacol. Rev., 45, 309

10.1111/j.1749-6632.1991.tb17321.x

10.1046/j.1471-4159.2003.02160.x

10.1203/00006450-199010000-00012

10.1159/000320170

10.1113/jphysiol.2008.154351

10.1542/peds.2005-0191

10.1016/S1474-4422(08)70294-1

10.1161/01.STR.0000132196.49028.a4

10.1016/j.jneuroim.2006.11.014

Welch K.M., 1990, Pathophysiological correlates of cerebral ischemia the significance of cellular acid base shifts, Funct. Neurol., 5, 21

10.1203/01.pdr.0000252546.20451.1a

10.1002/ana.410310104

10.1203/00006450-199711000-00024

10.1093/brain/awh618

10.1016/j.annemergmed.2006.07.932

10.1002/mrdd.10003

10.1203/01.PDR.0000115681.95957.D4

10.1016/S0169-328X(99)00007-8

10.1016/j.neuroscience.2009.07.009

10.1016/S0002-9378(97)70432-0

10.1067/mob.2000.104207

10.1016/S0002-9378(96)70585-9

10.1016/j.jpeds.2010.03.030

10.1542/peds.2008-3553

10.1523/JNEUROSCI.1278-04.2004