Tác động tích cực của việc bổ sung đồng thời Lactobacillus reuteri và các hạt nano flouro canxi lên loãng xương do cắt buồng trứng gây ra

Dibachehr Rahmani1, Bahareh Faal1, Hakimeh Zali2, Saeed Hesami Tackallou1, Zahra Niknam3
1Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Neurophysiology Research Center, Cellular and Molecular Medicine research Institute, Urmia University of Medical Sciences, Urmia, Iran

Tóm tắt

Tóm tắt Đặt vấn đề Sự phát triển các chiến lược mới để ức chế và/hoặc điều trị loãng xương như một bệnh lý hệ thống mãn tính là một trong những chủ đề quan trọng nhất. Nghiên cứu hiện tại nhằm điều tra những tác động đồng thời của các hạt nano flouro canxi (CaF2 NPs) và Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) đối với loãng xương trong mô hình chuột cái cắt buồng trứng (OVX). Phương pháp Trong nghiên cứu này, 18 con chuột cái Wistar trưởng thành được phân bổ ngẫu nhiên thành 6 nhóm, bao gồm nhóm đối chứng, OVX, nhóm giả mạo, OVX + L. reuteri, OVX + CaF2 NPs, và OVX + L. reuteri + CaF2 NPs. Chúng tôi sử dụng chuột OVX để mô phỏng loãng xương sau mãn kinh, và các liệu pháp đã bắt đầu được thực hiện hai tuần trước khi phẫu thuật OVX và kéo dài liên tục trong bốn tuần. Mẫu máu của tất cả các nhóm được thu thập, và các dấu hiệu sinh hóa trong huyết thanh (estrogen, canxi, vitamin D3, và phosphatase kiềm (ALP)) được đo. Chiều dài xương ống chân và xương đùi của tất cả các nhóm được đo. Mẫu mô xương ống chân, thận và gan được phân tích bằng phương pháp nhuộm Hematoxylin và Eosin. Kết quả Kết quả của chúng tôi cho thấy việc bổ sung chế độ ăn L. reuteri và các hạt nano CaF2 với liều thấp trong 6 tuần không gây ra các tác dụng phụ đối với mô thận và gan. Chiều dài xương ống chân và xương đùi của chuột OVX cũng như số lượng osteoblast và osteocyte và các osteoid mới hình thành trong xương ống chân đã tăng lên đáng kể ở nhóm điều trị kết hợp. Hơn nữa, có sự gia tăng đáng kể nồng độ estrogen trong huyết thanh và sự giảm đáng kể nồng độ canxi và phosphatase kiềm trong huyết thanh ở các nhóm điều trị kết hợp so với các nhóm OVX không nhận chế độ ăn.

Từ khóa


Tài liệu tham khảo

Quach D, Parameswaran N, McCabe L, Britton RA. Characterizing how probiotic Lactobacillus reuteri 6475 and lactobacillic acid mediate suppression of osteoclast differentiation. Bone Rep. 2019;11:100227.

Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46.

Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

Tonk CH, Shoushrah SH, Babczyk P, Khaldi-Hansen E, Schulze M, Herten M, et al. Therapeutic treatments for osteoporosis—which combination of Pills is the best among the bad? Int J Mol Sci. 2022;23(3):1393.

Niknam Z, Zali H, Mansouri V, Tavirani MR, Omidi M. Morphological and molecular analysis of osteoblasts differentiated from mesenchymal stem cells in polycaprolactone/magnesium oxide/graphene oxide scaffold. Int J Organ Transplantation Med. 2019;10(4):171.

Niknam Z, Golchin A, Rezaei–Tavirani M, Ranjbarvan P, Zali H, Omidi M, et al. Osteogenic differentiation potential of adipose-derived mesenchymal stem cells cultured on magnesium oxide/polycaprolactone nanofibrous scaffolds for improving bone tissue reconstruction. Adv Pharm Bull. 2020;12(1):142–54.

Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, et al. Recent advances and challenges in graphene‐based nanocomposite scaffolds for tissue engineering application. J Biomedical Mater Res Part A. 2022;110(10):1695–721.

Lin JT, Lane JM. Osteoporosis: a review. Clin Orthop Relat Research®. 2004;425:126–34.

Liang B, Burley G, Lin S, Shi Y-C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett. 2022;27(1):72.

Deeks ED. Denosumab: a review in postmenopausal osteoporosis. Drugs Aging. 2018;35:163–73.

Paspaliaris V, Kolios G. Stem cells in osteoporosis: from biology to new therapeutic approaches. Stem Cells International. 2019;2019.

Hadjiargyrou M, Komatsu DE. The therapeutic potential of microRNAs as orthobiologics for skeletal fractures. J Bone Miner Res. 2019;34(5):797–809.

Liu H, Hao D, Wang X, Hu H, Li Y, Dong X. MiR-30a-3p promotes ovariectomy-induced osteoporosis in rats via targeting SFRP1. Eur Rev Med Pharmacol Sci. 2019;23(22):9754–60.

Nilsson A, Sundh D, Bäckhed F, Lorentzon M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double‐blind, clinical trial. J Intern Med. 2018;284(3):307–17.

Kunes M, Kvetina J, Probiotics. Preclinical testing for Verification of their gastrointestinal effectiveness. Nutraceuticals: Elsevier; 2016. pp. 799–810.

Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol. 2018;9:757.

Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229(11):1822–30.

McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228(8):1793–8.

Tripathy N, Perumal E, Ahmad R, Song JE, Khang G. Hybrid composite biomaterials. Principles of Regenerative Medicine. Elsevier; 2019. pp. 695–714.

Huang S, Chen JC, Hsu CW, Chang WH. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology. 2009;20(37):375102.

Fookes FA, Mengatto LN, Rigalli A, Luna JA. Controlled fluoride release for osteoporosis treatment using orally administered chitosan hydrogels. J Drug Deliv Sci Technol. 2019;51:268–75.

Riggs BL, Seeman E, Hodgson SF, Taves DR, O’Fallon WM. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis: comparison with conventional therapy. N Engl J Med. 1982;306(8):446–50.

Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for the care and use of laboratory animals. ILAR J. 1997;38(1):41–8.

Montazeri-Najafabady N, Ghasemi Y, Dabbaghmanesh MH, Ashoori Y, Talezadeh P, Koohpeyma F, et al. Exploring the bone sparing effects of postbiotics in the post-menopausal rat model. BMC Complement Med Ther. 2021;21(1):155.

Montazeri-Najafabady N, Ghasemi Y, Dabbaghmanesh MH, Talezadeh P, Koohpeyma F, Gholami A. Supportive role of probiotic strains in protecting rats from ovariectomy-induced cortical bone loss. Probiotics and Antimicrobial Proteins. 2019;11:1145–54.

Bala WA, Benitha V, Jeyasubramanian K, Hikku G, Sankar P, Kumar SV. Investigation of anti-bacterial activity and cytotoxicity of calcium fluoride nanoparticles. J Fluorine Chem. 2017;193:38–44.

Nakhaei O, Shahtahmassebi N, Rezaeeroknabadi M, Mohagheghi MB. Synthesis, characterization and study of optical properties of polyvinyl alcohol/CaF2 nanocomposite films. Scientia Iranica. 2012;19(6):1979–83.

Park SB, Lee YJ, Chung CK. Bone mineral density changes after ovariectomy in rats as an osteopenic model: stepwise description of double dorso-lateral approach. J Korean Neurosurg Soc. 2010;48(4):309.

Chargui I, Grissa I, Bensassi F, Hrira MY, Haouem S, Haouas Z, et al. Oxidative stress, biochemical and histopathological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): a molecular assessment. Biomed Environ Sci. 2012;25(6):672–83.

Lepola V, Jalovaara P, Väänänen K. The influence of clodronate on the torsional strength of the growing rat tibia in immobilization osteoporosis. Bone. 1994;15(3):367–71.

Tahvildari K, ESMAEILI PM, Ghammamy S, Nabipour H. CaF2 nanoparticles: synthesis and characterization. 2012.

Alharbi ND. Size controlled CaF2 nanocubes and their dosimetric properties using photoluminescence technique. Journal of Nanomaterials. 2015;2015.

Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, et al. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep. 2019;9(1):1–17.

Collins FL, Irwin R, Bierhalter H, Schepper J, Britton RA, Parameswaran N, et al. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS ONE. 2016;11(4):e0153180.

Azami M, Jalilifiroozinezhad S, Mozafari M, Rabiee M. Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications. Ceram Int. 2011;37(6):2007–14.

Spencer H, Kramer L. Osteoporosis: calcium, fluoride, and aluminum interactions. J Am Coll Nutr. 1985;4(1):121–8.

Mustafa RA, Alfky NA, Hijazi HH, Header EA, Azzeh FS. Biological effect of calcium and vitamin D dietary supplements against osteoporosis in ovariectomized rats. Prog Nutr. 2018;20(1):86–93.

Parvaneh K, Jamaluddin R, Karimi G, Erfani R. Effect of probiotics supplementation on bone mineral content and bone mass density. Sci World J. 2014;2014.

Ji M-X, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Translational Med. 2015;1(01):9–13.

Chen KLA, Liu X, Zhao YC, Hieronymi K, Rossi G, Auvil LS, et al. Long-term administration of conjugated estrogen and bazedoxifene decreased murine fecal β-glucuronidase activity without impacting overall microbiome community. Sci Rep. 2018;8(1):1–11.

Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Translational Med. 2012;10(1):1–11.

Sinkiewicz G. Lactobacillus reuteri in Health and Disease. Malmö University; 2010.

Mao H, Wang W, Shi L, Chen C, Han C, Zhao J, et al. Metabolomics and physiological analysis of the effect of calcium supplements on reducing bone loss in ovariectomized rats by increasing estradiol levels. Nutr Metabolism. 2021;18(1):1–14.

Suganthan N, Kumanan T, Kesavan V, Aravinthan M, Rajeshkannan N. Vitamin D status among postmenopausal osteoporotic women: a hospital based cross-sectional study from Northern Sri Lanka. BMC Nutr. 2020;6(1):1–8.

Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metabolism. 2013;98(7):2944–51.

Gokhale S, Bhaduri A. Provitamin D3 modulation through prebiotics supplementation: simulation based assessment. Sci Rep. 2019;9(1):1–8.

Berlin T, Björkhem I. Effect of calcium intake on serum levels of 25-hydroxyvitamin D3. Eur J Clin Invest. 1988;18(1):52–5.

Jorde R, Grimnes G. Increased calcium intake is associated lower serum 25-hydroxyvitamin D levels in subjects with adequate vitamin D intake: a population-based observational study. BMC Nutr. 2020;6(1):1–9.

Kalu DN, Chen C. Ovariectomized murine model of postmenopausal calcium malabsorption. J Bone Miner Res. 1999;14(4):593–601.

Ghanem K, Badawy I, Abdel-Salam A. Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralization in rats. Milchwissenschaft. 2004;59(9–10):472–5.

Stamp TC, Jenkins MV, Loveridge N, Saphier PW, Katakity M, MacArthur SE. Fluoride therapy in osteoporosis: Acute effects on parathyroid and mineral homoeostasis. Clin Sci. 1988;75(2):143–6.

Fočak M, Hasković E, Suljević D. The effect of fluoride on the serum level of calcium in the rat (Rattus norvegicus). Archives of Biological Sciences. 2012;64(4):1585–9.

Azinge E, Bolarin D. Osteocalcin and bone-specific alkaline phosphatase in sickle cell haemoglobinopathies. Nigerian J Physiological Sci. 2006;21:1–2.

Hooshmand S, Chai SC, Saadat RL, Payton ME, Brummel-Smith K, Arjmandi BH. Comparative effects of dried plum and dried apple on bone in postmenopausal women. Br J Nutr. 2011;106(6):923–30.

Wang J, Pei F, Tu C, Zhang H, Qiu X. Serum bone turnover markers in patients with primary bone tumors. Oncology. 2007;72(5–6):338–42.

Grigoryan AV, Dimitrova AA, Kostov KG, Russeva AL, Atanasova MA, Blagev AB, et al. Changes of serum concentrations of alkaline phosphatase and metalloproteinase-9 in an ovariectomized wistar rat model of osteoporosis. J Biomedical Clin Res. 2017;10(1):32–6.

Kim SK, Lee MH, Rhee MH. Studies on the effects of biomedicinal agents on serum concentration of Ca2+, P and ALP activity in osteoporosis-induced rats. J Vet Sci. 2003;4(2):151–4.

Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J Am Coll Nutr. 2017;36(7):497–506.