The architecture of the binding site in redox protein complexes: Implications for fast dissociation

Proteins: Structure, Function and Bioinformatics - Tập 55 Số 3 - Trang 603-612 - 2004
Peter B. Crowley1, M.A. Carrondo1
1Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal

Tóm tắt

AbstractInterprotein electron transfer is characterized by protein interactions on the millisecond time scale. Such transient encounters are ensured by extremely high rates of complex dissociation. Computational analysis of the available crystal structures of redox protein complexes reveals features of the binding site that favor fast dissociation. In particular, the complex interface is shown to have low geometric complementarity and poor packing. These features are consistent with the necessity for fast dissociation since the absence of close packing facilitates solvation of the interface and disruption of the complex. Proteins 2004;55:000–000. © 2004 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

Mathews FS, 2000, Protein–protein recognition, 60, 10.1093/oso/9780199637614.003.0003

10.1021/bi00070a025

Bendall DS, 1996, Protein electron transfer, 43

10.1021/ar0200955

10.1007/3-540-53260-9_6

10.1038/256705a0

10.1016/S0021-9258(17)46181-3

10.1016/0300-9084(96)88166-1

10.1073/pnas.93.1.13

10.1006/jmbi.1997.1234

10.1002/pro.5560060707

10.1006/jmbi.1998.1843

10.1006/jmbi.1998.2439

10.1002/prot.10085

10.1016/S0022-2836(02)01281-0

10.1093/nar/28.1.235

10.1016/S0065-3233(02)61001-0

Lambeth JD, 1979, Adrenodoxin reductase–adrenodoxin complex—flavin to iron–sulfur electron transfer as the rate limiting step in the NADPH cytochrome c reductase reaction, J Biol Chem, 254, 2766, 10.1016/S0021-9258(17)30139-4

10.1074/jbc.M008501200

10.1104/pp.123.3.1037

10.1038/84097

10.1021/ja953662a

10.1093/embo-reports/kvd057

10.1021/bi00185a005

10.1126/science.8140419

10.1021/bi00407a031

10.1016/S0022-2836(02)00168-7

10.1021/bi0025823

10.1126/science.1334573

10.1126/science.8085152

10.1038/nsb736

10.1111/j.1432-1033.1997.0393a.x

10.1038/nsb894

Speck SH, 1984, Characterization of the interaction of cytochrome c and mitochondrial ubiquinol–cytochrome c reductase, J Biol Chem, 259, 1064, 10.1016/S0021-9258(17)43566-6

10.1073/pnas.052704699

10.1021/bi952854f

10.1021/bi00196a004

10.1016/0022-2836(91)90027-4

10.1006/jmbi.1994.1334

10.1016/0022-2836(74)90570-1

10.1006/jmbi.1995.0351

10.1016/0263-7855(95)00073-9

10.1110/ps.9.8.1439

10.1016/S0969-2126(98)00035-5

10.1021/ja0112700

10.1006/jmbi.1994.1370

10.1146/annurev.bb.14.060185.001023

10.1002/(SICI)1097-0134(199706)28:2<153::AID-PROT4>3.0.CO;2-G

10.1016/S0959-440X(00)00065-8

Koppenol WH, 1982, The asymmetric distribution of charges on the surface of horse cytochrome c—functional implications, J Biol Chem, 257, 4426, 10.1016/S0021-9258(18)34740-9

10.1021/bi00268a008

10.1021/bi00387a013

Caffrey MS, 1992, Study of the cytochrome c 2–reaction center interaction by site directed mutagenesis, J Biol Chem, 267, 6317, 10.1016/S0021-9258(18)42698-1

10.1016/S0005-2728(96)00090-4

10.1038/nsb0295-122

10.1006/jmbi.1999.2919

10.1006/jmbi.1999.2829

10.1021/ja00291a006

10.1002/jmr.300080603

10.1006/jmbi.1998.2400

10.1007/978-3-642-72698-9

10.1021/ja0127032

10.1021/bi026296y

10.1021/bi0342968

10.1021/bi992306s

10.1002/1439-7633(20020603)3:6<526::AID-CBIC526>3.0.CO;2-N

10.1074/jbc.M203983200

10.1021/bi027198f

10.1021/bi026349b

10.1016/S0969-2126(01)00252-0

10.1002/(SICI)1097-0134(20000215)38:3<301::AID-PROT6>3.0.CO;2-Y

10.1107/S0021889891004399

10.1016/S0076-6879(97)77028-9