The amygdala between sensation and affect: a role in pain
Tóm tắt
The amygdala is a structure of the temporal lobe thought to be involved in assigning emotional significance to environmental information and triggering adapted physiological, behavioral and affective responses. A large body of literature in animals and human implicates the amygdala in fear. Pain having a strong affective and emotional dimension, the amygdala, especially its central nucleus (CeA), has also emerged in the last twenty years as key element of the pain matrix. The CeA receives multiple nociceptive information from the brainstem, as well as highly processed polymodal information from the thalamus and the cerebral cortex. It also possesses the connections that allow influencing most of the descending pain control systems as well as higher centers involved in emotional, affective and cognitive functions. Preclinical studies indicate that the integration of nociceptive inputs in the CeA only marginally contributes to sensory-discriminative components of pain, but rather contributes to associated behavior and affective responses. The CeA doesn’t have a major influence on responses to acute nociception in basal condition, but it induces hypoalgesia during aversive situation, such as stress or fear. On the contrary, during persistent pain states (inflammatory, visceral, neuropathic), a long-lasting functional plasticity of CeA activity contributes to an enhancement of the pain experience, including hyperalgesia, aversive behavioral reactions and affective anxiety-like states.
Tài liệu tham khảo
Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D: The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp 2012. in press 10.1002/hbm.22199
LeDoux JE: Emotion circuits in the brain. Annu Rev Neurosci 2000, 23: 155–184. 10.1146/annurev.neuro.23.1.155
Davis M, Walker DL, Miles L, Grillon C: Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 2010, 35: 105–135. 10.1038/npp.2009.109
Pare D, Duvarci S: Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 2012, 22: 717–723. 10.1016/j.conb.2012.02.014
Neugebauer V, Galhardo V, Maione S, Mackey SC: Forebrain pain mechanisms. Brain Res Rev 2009, 60: 226–242. 10.1016/j.brainresrev.2008.12.014
Neugebauer V, Li W, Bird GC, Han JS: The amygdala and persistent pain. Neuroscientist 2004, 10: 221–234. 10.1177/1073858403261077
Sah P, Faber ES, Lopez De Armentia M, Power J: The amygdaloid complex: anatomy and physiology. Physiol Rev 2003, 83: 803–834.
Alheid GF, de Olmos JS, Beltramino CA: Amygdala and extended amygdala. In The Rat Nervous System. 2nd edition. Edited by: Paxinos G. San Diego, CA: Academic; 1995:495–578.
Buot A, Yelnik J: Functional anatomy of the basal ganglia: limbic aspects. Rev Neurol (Paris) 2012, 168: 569–575. 10.1016/j.neurol.2012.06.015
Fudge JL, Breitbart MA, McClain C: Amygdaloid inputs define a caudal component of the ventral striatum in primates. J Comp Neurol 2004, 476: 330–347. 10.1002/cne.20228
Cassell MD, Freedman LJ, Shi C: The intrinsic organization of the central extended amygdala. Ann N Y Acad Sci 1999, 877: 217–241. 10.1111/j.1749-6632.1999.tb09270.x
Palomares-Castillo E, Hernandez-Perez OR, Perez-Carrera D, Crespo-Ramirez M, Fuxe K, Perez de la Mora M: The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Res 2012, 1476: 211–234.
Heimer L, Van Hoesen GW, Trimble M, Zahm DS: Anatomy of neuropsychiatry: the new anatomy of the basal forebrain and its implications for neuropsychiatric illness. Amsterdam: Boston Academic Press/Elsevier; 2008.
Veinante P, Stoeckel ME, Freund-Mercier MJ: GABA- and peptide-immunoreactivities co-localize in the rat central extended amygdala. NeuroReport 1997, 8: 2985–2989. 10.1097/00001756-199709080-00035
Poulin JF, Castonguay-Lebel Z, Laforest S, Drolet G: Enkephalin co-expression with classic neurotransmitters in the amygdaloid complex of the rat. J Comp Neurol 2008, 506: 943–959. 10.1002/cne.21587
Marchant NJ, Densmore VS, Osborne PB: Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 2007, 504: 702–715. 10.1002/cne.21464
McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M: Cortical afferents to the extended amygdala. Ann N Y Acad Sci 1999, 877: 309–338. 10.1111/j.1749-6632.1999.tb09275.x
Shi C, Davis M: Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J Neurosci 1999, 19: 420–430.
Bernard JF, Bester H, Besson JM: Involvement of the spino-parabrachio -amygdaloid and -hypothalamic pathways in the autonomic and affective emotional aspects of pain. Prog Brain Res 1996, 107: 243–255.
Gauriau C, Bernard JF: Pain pathways and parabrachial circuits in the rat. Exp Physiol 2002, 87: 251–258. 10.1113/eph8702357
Sarhan M, Freund-Mercier MJ, Veinante P: Branching patterns of parabrachial neurons projecting to the central extended amygdala: single axonal reconstructions. J Comp Neurol 2005, 491: 418–442. 10.1002/cne.20697
Bernard JF, Huang GF, Besson JM: Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 1992, 68: 551–569.
Neugebauer V, Li W: Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 2002, 87: 103–112.
Nakagawa T, Katsuya A, Tanimoto S, Yamamoto J, Yamauchi Y, Minami M, Satoh M: Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett 2003, 344: 197–200. 10.1016/S0304-3940(03)00465-8
Suwanprathes P, Ngu M, Ing A, Hunt G, Seow F: c-Fos immunoreactivity in the brain after esophageal acid stimulation. Am J Med 2003,115(Suppl 3A):31S-38S.
Greenwood-Van Meerveld B, Johnson AC, Schulkin J, Myers DA: Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Res 2006, 1071: 91–96. 10.1016/j.brainres.2005.11.071
Han JS, Neugebauer V: Synaptic plasticity in the amygdala in a visceral pain model in rats. Neurosci Lett 2004, 361: 254–257. 10.1016/j.neulet.2003.12.027
Bon K, Lanteri-Minet M, Michiels JF, Menetrey D: Cyclophosphamide cystitis as a model of visceral pain in rats: a c-fos and Krox-24 study at telencephalic levels, with a note on pituitary adenylate cyclase activating polypeptide (PACAP). Exp Brain Res 1998, 122: 165–174. 10.1007/s002210050504
Nishii H, Nomura M, Aono H, Fujimoto N, Matsumoto T: Up-regulation of galanin and corticotropin-releasing hormone mRNAs in the key hypothalamic and amygdaloid nuclei in a mouse model of visceral pain. Regul Pept 2007, 141: 105–112. 10.1016/j.regpep.2006.12.022
Carrasquillo Y, Gereau RW: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 2007, 27: 1543–1551. 10.1523/JNEUROSCI.3536-06.2007
Carrasquillo Y, Gereau RW: Hemispheric lateralization of a molecular signal for pain modulation in the amygdala. Mol Pain 2008, 4: 24. 10.1186/1744-8069-4-24
Cheng SJ, Chen CC, Yang HW, Chang YT, Bai SW, Yen CT, Min MY: Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci 2011, 31: 2258–2270. 10.1523/JNEUROSCI.5564-10.2011
Neugebauer V, Li W: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 2003, 89: 716–727.
Ji G, Neugebauer V: Hemispheric lateralization of pain processing by amygdala neurons. J Neurophysiol 2009, 102: 2253–2264. 10.1152/jn.00166.2009
Neugebauer V, Li W, Bird GC, Bhave G, Gereau RW: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003, 23: 52–63.
Bird GC, Lash LL, Han JS, Zou X, Willis WD, Neugebauer V: Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurones. J Physiol 2005, 564: 907–921. 10.1113/jphysiol.2005.084780
Goncalves L, Dickenson AH: Asymmetric time-dependent activation of right central amygdala neurones in rats with peripheral neuropathy and pregabalin modulation. Eur J Neurosci 2012, 36: 3204–3213. 10.1111/j.1460-9568.2012.08235.x
Ikeda R, Takahashi Y, Inoue K, Kato F: NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 2007, 127: 161–172. 10.1016/j.pain.2006.09.003
Ulrich-Lai YM, Xie W, Meij JT, Dolgas CM, Yu L, Herman JP: Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiol Behav 2006, 88: 67–76. 10.1016/j.physbeh.2006.03.012
Rouwette T, Vanelderen P, de Reus M, Loohuis NO, Giele J, van Egmond J, Scheenen W, Scheffer GJ, Roubos E, Vissers K, Kozicz T: Experimental neuropathy increases limbic forebrain CRF. Eur J Pain 2012, 16: 61–71. 10.1016/j.ejpain.2011.05.016
Goncalves L, Silva R, Pinto-Ribeiro F, Pego JM, Bessa JM, Pertovaara A, Sousa N, Almeida A: Neuropathic pain is associated with depressive behaviour and induces neuroplasticity in the amygdala of the rat. Exp Neurol 2008, 213: 48–56. 10.1016/j.expneurol.2008.04.043
Traub RJ, Silva E, Gebhart GF, Solodkin A: Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neurosci Lett 1996, 215: 165–168. 10.1016/0304-3940(96)12978-5
Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C: Painful stimuli evoke different stimulus–response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 2002, 125: 1326–1336. 10.1093/brain/awf137
Petrovic P, Carlsson K, Petersson KM, Hansson P, Ingvar M: Context-dependent deactivation of the amygdala during pain. J Cogn Neurosci 2004, 16: 1289–1301. 10.1162/0898929041920469
Bonaz B, Baciu M, Papillon E, Bost R, Gueddah N, Le Bas JF, Fournet J, Segebarth C: Central processing of rectal pain in patients with irritable bowel syndrome: an fMRI study. Am J Gastroenterol 2002, 97: 654–661. 10.1111/j.1572-0241.2002.05545.x
Veinante P, Freund-Mercier MJ: Branching patterns of central amygdaloid nucleus efferents in the Rat: single-axon reconstructions. Ann N Y Acad Sci 2003, 985: 552–553.
Pavlovic ZW, Bodnar RJ: Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats. Brain Res 1998, 779: 158–169. 10.1016/S0006-8993(97)01115-3
Hermann DM, Luppi PH, Peyron C, Hinckel P, Jouvet M: Afferent projections to the rat nuclei raphe magnus, raphe pallidus and reticularis gigantocellularis pars alpha demonstrated by iontophoretic application of choleratoxin (subunit b). J Chem Neuroanat 1997, 13: 1–21. 10.1016/S0891-0618(97)00019-7
Almeida A, Cobos A, Tavares I, Lima D: Brain afferents to the medullary dorsal reticular nucleus: a retrograde and anterograde tracing study in the rat. Eur J Neurosci 2002, 16: 81–95. 10.1046/j.1460-9568.2002.02058.x
Jin X, Cui N, Zhong W, Jin XT, Jiang C: GABA-ergic synaptic inputs of locus coeruleus neurons in wild-type and Mecp2-null mice. Am J Physiol Cell Physiol 2013. in press 10.1152/ajpcell.00399.2012
Zahm DS, Cheng AY, Lee TJ, Ghobadi CW, Schwartz ZM, Geisler S, Parsely KP, Gruber C, Veh RW: Inputs to the midbrain dopaminergic complex in the rat, with emphasis on extended amygdala-recipient sectors. J Comp Neurol 2011, 519: 3159–3188. 10.1002/cne.22670
Wallace DM, Magnuson DJ, Gray TS: Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat. Brain Res Bull 1992, 28: 447–454. 10.1016/0361-9230(92)90046-Z
Barrot M: Tests and models of nociception and pain in rodents. Neuroscience 2012, 211: 39–50.
Calvino B, Levesque G, Besson JM: Possible involvement of the amygdaloid complex in morphine analgesia as studied by electrolytic lesions in rats. Brain Res 1982, 233: 221–226. 10.1016/0006-8993(82)90946-5
Helmstetter FJ, Bellgowan PS: Lesions of the amygdala block conditional hypoalgesia on the tail flick test. Brain Res 1993, 612: 253–257. 10.1016/0006-8993(93)91669-J
Manning BH, Mayer DJ: The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test. J Neurosci 1995, 15: 8199–8213.
Han Y, Yu LC: Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats. Neurosci Lett 2009, 454: 101–104. 10.1016/j.neulet.2009.02.062
Cui XY, Lundeberg T, Yu LC: Role of corticotropin-releasing factor and its receptor in nociceptive modulation in the central nucleus of amygdala in rats. Brain Res 2004, 995: 23–28. 10.1016/j.brainres.2003.09.050
Xu W, Lundeberg T, Wang YT, Li Y, Yu LC: Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdala-periaqueductal gray pathway. Neuroscience 2003, 118: 1015–1022. 10.1016/S0306-4522(03)00069-1
Jin WY, Liu Z, Liu D, Yu LC: Antinociceptive effects of galanin in the central nucleus of amygdala of rats, an involvement of opioid receptors. Brain Res 2010, 1320: 16–21.
Ahn DK, Kim KH, Ju JS, Kwon S, Park JS: Microinjection of arginine vasopressin into the central nucleus of amygdala suppressed nociceptive jaw opening reflex in freely moving rats. Brain Res Bull 2001, 55: 117–121. 10.1016/S0361-9230(01)00493-2
Kalivas PW, Gau BA, Nemeroff CB, Prange AJ Jr: Antinociception after microinjection of neurotensin into the central amygdaloid nucleus of the rat. Brain Res 1982, 243: 279–286. 10.1016/0006-8993(82)90251-7
Ahn DK, Kim YS, Park JS: Central-amygdaloid carbachol suppressed nociceptive jaw opening reflex in freely moving rats. Prog Neuropsychopharmacol Biol Psychiatry 1999, 23: 685–695. 10.1016/S0278-5846(99)00027-5
Ortiz JP, Heinricher MM, Selden NR: Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience 2007, 148: 737–743. 10.1016/j.neuroscience.2007.07.003
Oliveira MA, Prado WA: Antinociception and behavioral manifestations induced by intracerebroventricular or intra-amygdaloid administration of cholinergic agonists in the rat. Pain 1994, 57: 383–391. 10.1016/0304-3959(94)90014-0
Leite-Panissi CR, Brentegani MR, Menescal-de-Oliveira L: Cholinergic-opioidergic interaction in the central amygdala induces antinociception in the guinea pig. Braz J Med Biol Res 2004, 37: 1571–1579. 10.1590/S0100-879X2004001000018
Manning BH, Martin WJ, Meng ID: The rodent amygdala contributes to the production of cannabinoid-induced antinociception. Neuroscience 2003, 120: 1157–1170. 10.1016/S0306-4522(03)00356-7
Sarhan M, Pawlowski SA, Barthas F, Yalcin I, Kaufling J, Dardente H, Zachariou V, Dileone RJ, Barrot M, Veinante P: BDNF parabrachio-amygdaloid pathway in morphine-induced analgesia. Int J Neuropsychopharmacol 2013. in press 10.1017/S146114571200168X
Bellgowan PS, Helmstetter FJ: Neural systems for the expression of hypoalgesia during nonassociative fear. Behav Neurosci 1996, 110: 727–736.
Helmstetter FJ: The amygdala is essential for the expression of conditional hypoalgesia. Behav Neurosci 1992, 106: 518–528.
Manning BH, Mayer DJ: The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain 1995, 63: 141–152. 10.1016/0304-3959(95)00027-P
Tanimoto S, Nakagawa T, Yamauchi Y, Minami M, Satoh M: Differential contributions of the basolateral and central nuclei of the amygdala in the negative affective component of chemical somatic and visceral pains in rats. Eur J Neurosci 2003, 18: 2343–2350. 10.1046/j.1460-9568.2003.02952.x
Gao YJ, Ren WH, Zhang YQ, Zhao ZQ: Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats. Pain 2004, 110: 343–353. 10.1016/j.pain.2004.04.030
Pedersen LH, Scheel-Kruger J, Blackburn-Munro G: Amygdala GABA-A receptor involvement in mediating sensory-discriminative and affective-motivational pain responses in a rat model of peripheral nerve injury. Pain 2007, 127: 17–26. 10.1016/j.pain.2006.06.036
Ansah OB, Bourbia N, Goncalves L, Almeida A, Pertovaara A: Influence of amygdaloid glutamatergic receptors on sensory and emotional pain-related behavior in the neuropathic rat. Behav Brain Res 2010, 209: 174–178. 10.1016/j.bbr.2010.01.021
Crock LW, Kolber BJ, Morgan CD, Sadler KE, Vogt SK, Bruchas MR, Gereau RW: Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 2012, 32: 14217–14226. 10.1523/JNEUROSCI.1473-12.2012
Kolber BJ, Montana MC, Carrasquillo Y, Xu J, Heinemann SF, Muglia LJ, Gereau RW: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior. J Neurosci 2010, 30: 8203–8213. 10.1523/JNEUROSCI.1216-10.2010
Han JS, Neugebauer V: mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain 2005, 113: 211–222. 10.1016/j.pain.2004.10.022
Palazzo E, Fu Y, Ji G, Maione S, Neugebauer V: Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology 2008, 55: 537–545. 10.1016/j.neuropharm.2008.05.007
Ortiz JP, Close LN, Heinricher MM, Selden NR: Alpha(2)-noradrenergic antagonist administration into the central nucleus of the amygdala blocks stress-induced hypoalgesia in awake behaving rats. Neuroscience 2008, 157: 223–228. 10.1016/j.neuroscience.2008.08.051
Deyama S, Takishita A, Tanimoto S, Ide S, Nakagawa T, Satoh M, Minami M: Roles of beta- and alpha2-adrenoceptors within the central nucleus of the amygdala in the visceral pain-induced aversion in rats. J Pharmacol Sci 2010, 114: 123–126. 10.1254/jphs.10139SC
Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V: Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 2010, 6: 10. 10.1186/1744-8069-6-10
Han JS, Li W, Neugebauer V: Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 2005, 25: 10717–10728. 10.1523/JNEUROSCI.4112-05.2005
Ji G, Fu Y, Adwanikar H, Neugebauer V: Non-pain-related CRF1 activation in the amygdala facilitates synaptic transmission and pain responses. Mol Pain 2013, 9: 2. 10.1186/1744-8069-9-2
Ji G, Fu Y, Ruppert KA, Neugebauer V: Pain-related anxiety-like behavior requires CRF1 receptors in the amygdala. Mol Pain 2007, 3: 13. 10.1186/1744-8069-3-13
Fu Y, Neugebauer V: Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci 2008, 28: 3861–3876. 10.1523/JNEUROSCI.0227-08.2008
Qin C, Greenwood-Van Meerveld B, Foreman RD: Spinal neuronal responses to urinary bladder stimulation in rats with corticosterone or aldosterone onto the amygdala. J Neurophysiol 2003, 90: 2180–2189. 10.1152/jn.00298.2003
Qin C, Greenwood-Van Meerveld B, Myers DA, Foreman RD: Corticosterone acts directly at the amygdala to alter spinal neuronal activity in response to colorectal distension. J Neurophysiol 2003, 89: 1343–1352.
Myers B, Dittmeyer K, Greenwood-Van Meerveld B: Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007, 181: 163–167. 10.1016/j.bbr.2007.03.031
Myers B, Greenwood-Van Meerveld B: Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 2007, 292: G1622–1629. 10.1152/ajpgi.00080.2007
Fu Y, Han J, Ishola T, Scerbo M, Adwanikar H, Ramsey C, Neugebauer V: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior. Mol Pain 2008, 4: 26. 10.1186/1744-8069-4-26
Crown ED, King TE, Meagher MW, Grau JW: Shock-induced hyperalgesia: III. Role of the bed nucleus of the stria terminalis and amygdaloid nuclei. Behav Neurosci 2000, 114: 561–573.
Rhudy JL, Meagher MW: Negative affect: effects on an evaluative measure of human pain. Pain 2003, 104: 617–626. 10.1016/S0304-3959(03)00119-2
Yalcin I, Bohren Y, Waltisperger E, Sage-Ciocca D, Yin JC, Freund-Mercier MJ, Barrot M: A time-dependent history of mood disorders in a murine model of neuropathic pain. Biol Psychiatry 2011, 70: 946–953. 10.1016/j.biopsych.2011.07.017
Calvino B, Besson JM, Boehrer A, Depaulis A: Ultrasonic vocalization (22–28 kHz) in a model of chronic pain, the arthritic rat: effects of analgesic drugs. NeuroReport 1996, 7: 581–584. 10.1097/00001756-199601310-00049
Kulkarni B, Bentley DE, Elliott R, Julyan PJ, Boger E, Watson A, Boyle Y, El-Deredy W, Jones AK: Arthritic pain is processed in brain areas concerned with emotions and fear. Arthritis Rheum 2007, 56: 1345–1354. 10.1002/art.22460
Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P: A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 1999, 83: 459–470. 10.1016/S0304-3959(99)00150-5
Yoshino A, Okamoto Y, Onoda K, Yoshimura S, Kunisato Y, Demoto Y, Okada G, Yamawaki S: Sadness enhances the experience of pain via neural activation in the anterior cingulate cortex and amygdala: an fMRI study. NeuroImage 2010, 50: 1194–1201. 10.1016/j.neuroimage.2009.11.079
Younger J, Aron A, Parke S, Chatterjee N, Mackey S: Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems. PLoS One 2010, 5: e13309. 10.1371/journal.pone.0013309
Delaney AJ, Crane JW, Sah P: Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 2007, 56: 880–892. 10.1016/j.neuron.2007.10.022
Yamano M, Hillyard CJ, Girgis S, Emson PC, MacIntyre I, Tohyama M: Projection of neurotensin-like immunoreactive neurons from the lateral parabrachial area to the central amygdaloid nucleus of the rat with reference to the coexistence with calcitonin gene-related peptide. Exp Brain Res 1988, 71: 603–610. 10.1007/BF00248753
Salio C, Averill S, Priestley JV, Merighi A: Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev Neurobiol 2007, 67: 326–338. 10.1002/dneu.20358
Sun N, Cassel MD: Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp Neurol 1993, 330: 381–404. 10.1002/cne.903300308
Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, et al.: Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 2010, 468: 277–282. 10.1038/nature09559
Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, et al.: Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010, 468: 270–276. 10.1038/nature09553
Dong YL, Fukazawa Y, Wang W, Kamasawa N, Shigemoto R: Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. J Comp Neurol 2010, 518: 4771–4791. 10.1002/cne.22487
Li W, Neugebauer V: Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004, 91: 13–24.
Ren W, Neugebauer V: Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1. Mol Pain 2010, 6: 93. 10.1186/1744-8069-6-93
Han JS, Bird GC, Neugebauer V: Enhanced group III mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Neuropharmacology 2004, 46: 918–926. 10.1016/j.neuropharm.2004.01.006
Han JS, Fu Y, Bird GC, Neugebauer V: Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Mol Pain 2006, 2: 18. 10.1186/1744-8069-2-18
Li W, Neugebauer V: Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol 2006, 96: 1803–1815. 10.1152/jn.00495.2006
Li Z, Ji G, Neugebauer V: Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior. J Neurosci 2011, 31: 1114–1127. 10.1523/JNEUROSCI.5387-10.2011
Li W, Neugebauer V: Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain. Pain 2004, 110: 112–122. 10.1016/j.pain.2004.03.015
Jaferi A, Pickel VM: Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience 2009, 159: 526–539. 10.1016/j.neuroscience.2008.12.061
Zhu W, Pan ZZ: Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience 2005, 133: 97–103. 10.1016/j.neuroscience.2005.02.004
Chieng BC, Christie MJ, Osborne PB: Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J Comp Neurol 2006, 497: 910–927. 10.1002/cne.21025
Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T: Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 2006, 31: 739–750. 10.1038/sj.npp.1300858
Finnegan TF, Chen SR, Pan HL: Effect of the mu opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 2005, 312: 441–448.
Deyama S, Nakagawa T, Kaneko S, Uehara T, Minami M: Involvement of the bed nucleus of the stria terminalis in the negative affective component of visceral and somatic pain in rats. Behav Brain Res 2007, 176: 367–371. 10.1016/j.bbr.2006.10.021
Deyama S, Katayama T, Kondoh N, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M: Role of enhanced noradrenergic transmission within the ventral bed nucleus of the stria terminalis in visceral pain-induced aversion in rats. Behav Brain Res 2009, 197: 279–283. 10.1016/j.bbr.2008.08.024
Deyama S, Katayama T, Ohno A, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M: Activation of the beta-adrenoceptor-protein kinase A signaling pathway within the ventral bed nucleus of the stria terminalis mediates the negative affective component of pain in rats. J Neurosci 2008, 28: 7728–7736. 10.1523/JNEUROSCI.1480-08.2008
Deyama S, Ide S, Kondoh N, Yamaguchi T, Yoshioka M, Minami M: Inhibition of noradrenaline release by clonidine in the ventral bed nucleus of the stria terminalis attenuates pain-induced aversion in rats. Neuropharmacology 2011, 61: 156–160. 10.1016/j.neuropharm.2011.03.023
Ide S, Hara T, Ohno A, Tamano R, Koseki K, Naka T, Maruyama C, Kaneda K, Yoshioka M, Minami M: Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats. J Neurosci 2013, 33: 5881–5894. 10.1523/JNEUROSCI.4278-12.2013
Connell K, Bolton N, Olsen D, Piomelli D, Hohmann AG: Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia. Neurosci Lett 2006, 397: 180–184. 10.1016/j.neulet.2005.12.008
Rea K, Olango WM, Harhen B, Kerr DM, Galligan R, Fitzgerald S, Moore M, Roche M, Finn DP: Evidence for a role of GABAergic and glutamatergic signalling in the basolateral amygdala in endocannabinoid-mediated fear-conditioned analgesia in rats. Pain 2013, 154: 576–585. 10.1016/j.pain.2012.12.021
Rea K, Roche M, Finn DP: Modulation of conditioned fear, fear-conditioned analgesia, and brain regional c-Fos expression following administration of muscimol into the rat basolateral amygdala. J Pain 2011, 12: 712–721. 10.1016/j.jpain.2010.12.010
Helmstetter FJ: Stress-induced hypoalgesia and defensive freezing are attenuated by application of diazepam to the amygdala. Pharmacol Biochem Behav 1993, 44: 433–438. 10.1016/0091-3057(93)90487-E
Nandigama P, Borszcz GS: Affective analgesia following the administration of morphine into the amygdala of rats. Brain Res 2003, 959: 343–354. 10.1016/S0006-8993(02)03884-2
Helmstetter FJ, Bellgowan PS, Poore LH: Microinfusion of mu but not delta or kappa opioid agonists into the basolateral amygdala results in inhibition of the tail flick reflex in pentobarbital-anesthetized rats. J Pharmacol Exp Ther 1995, 275: 381–388.
McGaraughty S, Heinricher MM: Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity. Pain 2002, 96: 153–162. 10.1016/S0304-3959(01)00440-7
Chen J, Song Y, Yang J, Zhang Y, Zhao P, Zhu XJ, Su HC: The contribution of TNF-alpha in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci Lett 2013, 541: 275–280.
Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, Neugebauer V: Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 2010, 30: 5451–5464. 10.1523/JNEUROSCI.0225-10.2010
Deyama S, Yamamoto J, Machida T, Tanimoto S, Nakagawa T, Kaneko S, Satoh M, Minami M: Inhibition of glutamatergic transmission by morphine in the basolateral amygdaloid nucleus reduces pain-induced aversion. Neurosci Res 2007, 59: 199–204. 10.1016/j.neures.2007.06.1473
Watabe AM, Ochiai T, Nagase M, Takahashi Y, Sato M, Kato F: Synaptic potentiation in the nociceptive amygdala following fear learning in mice. Mol Brain 2013, 6: 11. 10.1186/1756-6606-6-11