Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phản ứng cấp tính của homocysteine sau bữa ăn đối với việc bổ sung vitamin và khoáng chất đa dạng với bữa ăn tiêu chuẩn không bị suy giảm ở người lớn tuổi so với người trẻ tuổi
Tóm tắt
Vitamin nhóm B là cần thiết cho việc điều chỉnh phức tạp của homocysteine và chuyển hóa một carbon (1C). Các bổ sung dinh dưỡng thường được người lớn tuổi sử dụng để đối phó với sự thiếu hụt dinh dưỡng. Tuy nhiên, việc sử dụng vitamin nhóm B từ các bổ sung trong chuyển hoá 1C sau bữa ăn có thể bị thay đổi theo độ tuổi do sự hấp thụ dinh dưỡng và điều chỉnh chuyển hóa bị suy giảm. Mặc dù có ảnh hưởng đến sức khỏe và tình trạng dinh dưỡng, nhưng phản ứng của các chất chuyển hóa 1C sau bữa ăn chưa được đặc trưng ở người lớn tuổi. Những người tham gia khỏe mạnh ở độ tuổi lớn hơn (n = 20, 65–76 tuổi) và trẻ hơn (n = 20, 19–30 tuổi) đã được tuyển mộ thông qua các quảng cáo trực tuyến và in ấn tại Auckland, New Zealand. Những người tham gia đã tiêu thụ một loại vitamin và khoáng chất đa dạng cùng với một bữa sáng tiêu chuẩn. Mẫu máu được thu thập tại thời điểm cơ bản và hàng giờ trong 4 giờ sau khi tiêu thụ. Các chất chuyển hóa 1C trong huyết tương (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) đã được định lượng bằng phương pháp sắc ký lỏng ghép nối với phổ khối. Homocysteine huyết thanh, folate và vitamin B12 được định lượng trên máy phân tích tự động Cobas e411. Người lớn tuổi có nồng độ homocysteine lúc đói cao hơn (người lớn tuổi: 14.0 ± 2.9 µmol/L; người trẻ: 12.2 ± 2.5 µmol/L; p = 0.036) mặc dù có nồng độ folate cao hơn (người lớn tuổi: 36.7 ± 17.4 nmol/L; người trẻ: 21.6 ± 7.6 nmol/L; p < 0.001) và nồng độ vitamin B12 tương tự (p = 0.143) so với người trẻ. Tuy nhiên, một sự giảm sút sau bữa ăn tương tự về homocysteine đã được tìm thấy ở cả hai nhóm tuổi là người lớn và người trẻ đối với bữa ăn kết hợp và bổ sung. Ngoại trừ sự giảm nhanh hơn của cystathionine ở người lớn tuổi (p = 0.003), phản ứng sau bữa ăn của các chất chuyển hóa 1C khác là tương tự giữa người trẻ và người lớn tuổi. Người lớn tuổi khỏe mạnh dường như duy trì khả năng phản ứng sau bữa ăn của chuyển hóa 1C tương tự như ở người trẻ tuổi, được hỗ trợ bởi sự giảm tương tự về nồng độ homocysteine sau bữa ăn.
Từ khóa
#Vitamin B #chuyển hóa homocysteine #người lớn tuổi #chất chuyển hóa một carbon #bổ sung dinh dưỡngTài liệu tham khảo
United Nations Department of Economic and Social Affairs, Population Division (2019) World population ageing 2019: highlights, (ST/ESA/SER.A/430)
Mathers JC (2015) Impact of nutrition on the ageing process. Br J Nutr 113:S18–S22. https://doi.org/10.1017/S0007114514003237
Porter K, Hoey L, Hughes CF et al (2016) Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients 8:725. https://doi.org/10.3390/nu8110725
Ribaya-Mercado J, Russell R, Sahyoun N et al (1991) Vitamin B-6 requirements of elderly men and women. J Nutr 121:1062–1074. https://doi.org/10.1093/jn/121.7.1062
Morley JE (2001) Decreased food intake with aging. J Gerontol A Biol Sci Med Sci 56:81–88. https://doi.org/10.1093/gerona/56.suppl_2.81
Gahche JJ, Bailey RL, Potischman N, Dwyer JT (2017) Dietary supplement use was very high among older adults in the United States in 2011–2014. J Nutr 147:1968–1976
Blumberg J, Frei B, Fulgoni V et al (2017) Impact of frequency of multi-vitamin/multi-mineral supplement intake on nutritional adequacy and nutrient deficiencies in US adults. Nutrients 9:849. https://doi.org/10.3390/nu9080849
Bailey RL, Fulgoni VL, Keast DR, Dwyer JT (2012) Examination of vitamin intakes among US adults by dietary supplement use. J Acad Nutr Diet 112:657-663.e4. https://doi.org/10.1016/j.jand.2012.01.026
Wallace TC, McBurney M, Fulgoni VL (2014) Multivitamin/mineral supplement contribution to micronutrient intakes in the United States, 2007–2010. J Am Coll Nutr. https://doi.org/10.1080/07315724.2013.846806
McKay DL, Perrone G, Rasmussen H et al (2000) Multivitamin/mineral supplementation improves plasma B-vitamin status and homocysteine concentration in healthy older adults consuming a folate-fortified diet. J Nutr 130:3090–3096. https://doi.org/10.1093/jn/130.12.3090
Steenge GR, Verhoef P, Katan MB (2003) Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 133:1291–1295. https://doi.org/10.1093/jn/133.5.1291
Olthof MR, Brink EJ, Katan MB, Verhoef P (2005) Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. Am J Clin Nutr 82:111–117 (pii)
Atkinson W, Elmslie J, Lever M et al (2008) Dietary and supplementary betaine: acute effects on plasma betaine and homocysteine concentrations under standard and postmethionine load conditions in healthy male subjects. Am J Clin Nutr 87:577–585
Lamers Y, Coats B, Ralat M et al (2011) Moderate vitamin B-6 restriction does not alter postprandial methionine cycle rates of remethylation, transmethylation, and total transsulfuration but increases the fractional synthesis rate of cystathionine in healthy young men and women. J Nutr 141:835–842. https://doi.org/10.3945/jn.110.134197
Rios-Avila L, Coats B, Ralat M et al (2015) Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in Vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 102:616–625. https://doi.org/10.3945/ajcn.115.113159
Obeid R, Awwad HM, Knell AI et al (2018) Glucose and fat tolerance tests induce differential responses in plasma choline metabolites in healthy subjects. Nutrients 10:1209. https://doi.org/10.3390/nu10091209
van Ommen B, van der Greef J, Ordovas JM, Daniel H (2014) Phenotypic flexibility as key factor in the human nutrition and health relationship. Genes Nutr 9:1–9. https://doi.org/10.1007/s12263-014-0423-5
van den Broek TJ, Kremer BHA, Marcondes Rezende M et al (2017) The impact of micronutrient status on health: correlation network analysis to understand the role of micronutrients in metabolic-inflammatory processes regulating homeostasis and phenotypic flexibility. Genes Nutr 12:5. https://doi.org/10.1186/s12263-017-0553-7
van Ommen B, Keijer J, Heil SG, Kaput J (2009) Challenging homeostasis to define biomarkers for nutrition related health. Mol Nutr Food Res 53:795–804. https://doi.org/10.1002/mnfr.200800390
Ning F, Tuomilehto J, Pyörälä K et al (2010) Cardiovascular disease mortality in europeans in relation to fasting and 2-h plasma glucose levels within a normoglycemic range. Diabetes Care 33:2211–2216. https://doi.org/10.2337/dc09-2328
Kolovou GP, Mikhailidis D, Kovar J et al (2011) Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol 999:1–13. https://doi.org/10.2174/1570211213146321611
Blaak EE, Antoine JM, Benton D et al (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13:923–984. https://doi.org/10.1111/j.1467-789X.2012.01011.x
Verhoef P, Van Vliet T, Olthof MR, Katan MB (2005) A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers. Am J Clin Nutr 82:553–558. https://doi.org/10.1093/ajcn/82.3.553
Candito M, Auhin-Brunet V, Beaulieu F et al (1997) Increased postprandial homocysteinemia in a group of depressed patients. Amino Acids 12:315–321. https://doi.org/10.1007/BF01373012
Chiang EPI, Wang YC, Chen WW, Tang FY (2009) Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J Clin Endocrinol Metab 94:1017–1025. https://doi.org/10.1210/jc.2008-2038
Ratnam S, Wijekoon EP, Hall B et al (2006) Effects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver. Am J Physiol Endocrinol Metab 290:E933–E939. https://doi.org/10.1152/ajpendo.00498.2005
Milan AM, D’Souza RF, Pundir S et al (2015) Older adults have delayed amino acid absorption after a high protein mixed breakfast meal. J Nutr Heal Aging 19:839–845. https://doi.org/10.1007/s12603-015-0500-5
Milan AM, Nuora A, Pundir S et al (2016) Older adults have an altered chylomicron response to a high-fat meal. Br J Nutr 115:791–799. https://doi.org/10.1017/S000711451500505X
Baik HW, Russell RM (1999) Vitamin B12 deficiency in the elderly. Annu Rev Nutr 19:357–377
Sharma P, Han S, Gillies N et al (2020) Circulatory and urinary B-vitamin responses to multivitamin supplement ingestion differ between older and younger adults: a preliminary study. Nutrients 12:3529
Sharma P, Gillies N, Pundir S et al (2019) Comparison of the acute postprandial circulating B-vitamin and vitamer responses to single breakfast meals in young and older individuals: preliminary secondary outcomes of a randomized controlled trial. Nutrients 22:2893. https://doi.org/10.3390/nu11122893
Navarro M, Wood RJ (2003) Plasma changes in micronutrients following a multivitamin and mineral supplement in healthy adults. J Am Coll Nutr 22:124–132. https://doi.org/10.1080/07315724.2003.10719285
Yan J, Winter LB, Burns-Whitmore B et al (2012) Plasma choline metabolites associate with metabolic stress among young overweight men in a genotype-specific manner. Nutr Diabetes 2:e49. https://doi.org/10.1038/nutd.2012.23
Bae S, Ulrich CM, Neuhouser ML et al (2014) Plasma choline metabolites and colorectal cancer risk in the women’s health initiative observational study. Cancer Res 74:7442–7452. https://doi.org/10.1158/0008-5472.CAN-14-1835
Andraos S, Goy M, Albert BB et al (2020) Robotic automation of a UHPLC/MS-MS method profiling one-carbon metabolites, amino acids, and precursors in plasma. Anal Biochem 592:113558. https://doi.org/10.1016/j.ab.2019.113558
Wei R, Wang J, Su M et al (2018) Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep 8:1. https://doi.org/10.1038/s41598-017-19120-0
Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. https://doi.org/10.1007/BF00280883
R Core Team (2017) R: a language and environment for statistical computing. Vienna, Austria. https://www.R-project.org
Morley J (2007) The aging gut: physiology. Clin Geriatr Med 23:757–767
Ubbink JB, Vermaak WJH, van Der Merwe A, Becker PJ (1992) The effect of blood sample aging and food consumption on plasma total homocysteine levels. Clin Chim Acta 207:119–128. https://doi.org/10.1016/0009-8981(92)90155-J
Guttormsen A, Schneede J, Fiskerstrand T et al (1994) Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects. J Nutr 124:1934–1941. https://doi.org/10.1093/jn/124.10.1934
Mayengbam S, Virtanen H, Hittel DS et al (2019) Metabolic consequences of discretionary fortified beverage consumption containing excessive vitamin B levels in adolescents. PLoS ONE 14:e0209913. https://doi.org/10.1371/journal.pone.0209913
Calvani R, Rodriguez-Mañas L, Picca A et al (2020) Identification of a circulating amino acid signature in frail older persons with type 2 diabetes mellitus: results from the metabofrail study. Nutrients 12:199. https://doi.org/10.3390/nu12010199
Calvani R, Picca A, Marini F et al (2018) A distinct pattern of circulating amino acids characterizes older persons with physical frailty and sarcopenia: results from the BIOSPHERE study. Nutrients 10:1691. https://doi.org/10.3390/nu10111691
Chan YC, Suzuki M, Yamamoto S (1999) A comparison of anthropometry, biochemical variables and plasma amino acids among centenarians, elderly and young subjects. J Am Coll Nutr 18:358–365. https://doi.org/10.1080/07315724.1999.10718876
Sarwar G, Botting HG, Collins M (1991) A comparison of fasting serum amino acid profiles of young and elderly subjects. J Am Coll Nutr 10:668–674. https://doi.org/10.1080/07315724.1991.10718185
Kouchiwa T, Wada K, Uchiyama M et al (2012) Age-related changes in serum amino acids concentrations in healthy individuals. Clin Chem Lab Med 50:861–870. https://doi.org/10.1515/cclm-2011-0846
Pitkänen HT, Oja SS, Kemppainen K et al (2003) Serum amino acid concentrations in aging men and women. Amino Acids 24:413–421. https://doi.org/10.1007/s00726-002-0338-0
Corke H (2020) One carbon metabolism in older adults: a comparison of the postprandial responses of plasma compounds involved in one carbon metabolism to different mixed-meals in healthy young and healthy older adults: a preliminary randomised control trial. University of Auckland, Auckland
Guttormsen AB, Solheim E, Refsum H (2004) Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am J Clin Nutr 79:76–79. https://doi.org/10.1093/ajcn/79.1.76
Obeid R, Kirsch SH, Dilmann S et al (2016) Folic acid causes higher prevalence of detectable unmetabolized folic acid in serum than B-complex: a randomized trial. Eur J Nutr 55:1021–1028. https://doi.org/10.1007/s00394-015-0916-z
Chen M, Zheng H, Wei T et al (2016) High glucose-induced PC12 cell death by increasing glutamate production and decreasing methyl group metabolism. Biomed Res Int. https://doi.org/10.1155/2016/4125731
Puga GM, Meyer C, Everman S et al (2011) Postprandial lipemia in the elderly involves increased incorporation of ingested fat in plasma free fatty acids and small (Sf 20–400) triglyceride-rich lipoproteins. Am J Physiol Endocrinol Metab 301:E356–E361. https://doi.org/10.1152/ajpendo.00670.2010
Said HM, Mohammed ZM (2006) Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22:140–146. https://doi.org/10.1097/01.mog.0000203870.22706.52
Meigs JB, Muller DC, Nathan DM et al (2003) The natural history of progression from normal glucose tolerance to type 2 diabetes in the baltimore longitudinal study of aging. Diabetes 52:1475–1484. https://doi.org/10.2337/diabetes.52.6.1475
Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428. https://doi.org/10.1016/S0140-6736(05)66378-7
Mitnitski A, Howlett SE, Rockwood K (2017) Heterogeneity of human aging and its assessment. J Gerontol Ser A Biol Sci Med Sci 72:877–884. https://doi.org/10.1093/gerona/glw089
Milan AM, Cameron-Smith D (2015) Digestion and postprandial metabolism in the elderly. Advances in food and nutrition research. Academic Press, San Diego, pp 79–124
National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health (2006) Nutrient reference values for Australia and New Zealand. Canberra: National Health and Medical Research Council
