The activation of nicotinic acetylcholine receptors enhances the inhibitory synaptic transmission in the deep dorsal horn neurons of the adult rat spinal cord

Molecular Pain - Tập 3 - Trang 1-10 - 2007
Daisuke Takeda1,2, Terumasa Nakatsuka3, Jianguo G Gu4, Munehito Yoshida1
1Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
2Department of Physiology, Kansai University of Health Sciences, Osaka, Japan
3Department of Physiology, Faculty of Medicine, Saga University, Saga, Japan
4Brain Institute and Department of Oral Surgery, Division of Neuroscience, College of Dentistry, University of Florida, Gainesville, USA

Tóm tắt

Somatosensory information can be modulated by nicotinic acetylcholine receptors (nAChRs) in the superficial dorsal horn of the spinal cord. Nonetheless, the functional significance of nAChRs in the deep dorsal horn of adult animals remains unclear. Using whole-cell patch-clamp recordings from lamina V neurons in the adult rat spinal cord, we investigated whether the activation of nAChRs could modulate the inhibitory synaptic transmission in the deep dorsal horn. In the presence of CNQX and APV to block excitatory glutamatergic synaptic transmission, bath applications of nicotine (100 μM) significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in almost all neurons tested. The effect of nicotine was mimicked by N-methyl-4-(3-pyridinyl)-3-butene-1-amine (RJR-2403, 100 μM), an α4β2-nAChR agonist, and was also mimicked by choline (10 mM), an α7-nAChR agonist. The effect of nicotine was completely blocked by the nAChR antagonist mecamylamine (5 μM). In the presence of tetrodotoxin (0.5 μM), nicotine (100 μM) significantly increased the miniature IPSC frequency. On the other hand, RJR-2403 (100 μM) or choline (10 mM) did not affect miniature IPSCs. The application of nicotine (100 μM) also evoked a large inward current in all lamina V neurons tested when cells were held at -60 mV. Similarly, RJR-2403 (100 μM) induced inward currents in the majority of lamina V neurons examined. On the other hand, choline (10 mM) did not elicit any detectable whole-cell currents. These results suggest that several nAChR subtypes are expressed on the presynaptic terminals, preterminals, and neuronal cell bodies within lamina V and that these nAChRs are involved in the modulation of inhibitory synaptic activity in the deep dorsal horn of the spinal cord.

Tài liệu tham khảo

Changeux JP, Edelstein SJ: Allosteric receptors after 30 years. Neuron 1998, 21: 959–980. 10.1016/S0896-6273(00)80616-9 McGehee DS: Molecular diversity of neuronal nicotinic acetylcholine receptors. Ann N Y Acad Sci 1999, 868: 565–577. 10.1111/j.1749-6632.1999.tb11330.x Dani JA, Ji D, Zhou FM: Synaptic plasticity and nicotine addiction. Neuron 2001, 31: 349–352. 10.1016/S0896-6273(01)00379-8 Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP: Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 2000, 21: 211–217. 10.1016/S0165-6147(00)01489-9 Davis L, Pollock LJ, Stone TT: Visceral pain. Surg Gynecol Obstet 1932, 55: 418–427. Sahley TL, Berntson GG: Antinociceptive effects of central and systemic administrations of nicotine in the rat. Psychopharmacology 1979, 65: 279–283. 10.1007/BF00492216 Tripathi HL, Martin BR, Aceto MD: Nicotine-induced antinociception in rats and mice: correlation with nicotine brain levels. J Pharmacol Exp Ther 1982, 221: 91–96. Aceto MD, Awaya H, Martin BR, May EL: Antinociceptive action of nicotine and its methiodide derivatives in mice and rats. Br J Pharmacol 1983, 79: 869–876. Spande TF, Garraffo HM, Yeh HJ, QL , Pannell LK, Daly JW: A new class of alkaloids from a dendrobatid poison frog: a structure for alkaloid 251F. J Nat Prod 1992, 55: 707–722. 10.1021/np50084a002 Qian C, Li T, Shen TY, Libertine-Garahan L, Eckman J, Biftu T, Ip S: Epibatidine is a nicotinic analgesic. Eur J Pharmacol 1993, 250: R13–14. 10.1016/0014-2999(93)90043-H Badio B, Daly JW: Epibatidine, a potent analgetic and nicotinic agonist. Mol Pharmacol 1994, 45: 563–569. Sullivan JP, Decker MW, Brioni JD, Donnelly-Roberts D, Anderson DJ, Bannon AW, Kang CH, Adams P, Piattoni-Kaplan M, Buckley MJ, et al.: (+/-)-Epibatidine elicits a diversity of in vitro and in vivo effects mediated by nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1994, 271: 624–631. Genzen JR, McGehee DS: Short- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors. Proc Natl Acad Sci USA 2003, 100: 6807–6812. 10.1073/pnas.1131709100 Cordero-Erausquin M, Changeux JP: Tonic nicotinic modulation of serotoninergic transmission in the spinal cord. Proc Natl Acad Sci USA 2001, 27: 2803–2807. 10.1073/pnas.041600698 Cordero-Erausquin M, Pons S, Faure P, Changeux JP: Nicotine differentially activates inhibitory and excitatory neurons in the dorsal spinal cord. Pain 2004, 109: 308–318. 10.1016/j.pain.2004.01.034 Kiyosawa A, Katsurabayashi S, Akaike N, Pang ZP: Nicotine facilitates glycine release in the rat spinal dorsal horn. J Physiol 2001, 536: 101–110. 10.1111/j.1469-7793.2001.t01-1-00101.x Fucile S, Lax P, Eusebi F: Nicotine modulates the spontaneous synaptic activity in cultured embryonic rat spinal cord interneurons. J Neurosci Res 2002, 67: 329–336. 10.1002/jnr.10124 Takeda D, Nakatsuka T, Papke R, Gu JG: Modulation of inhibitory synaptic activity by a non-α4β2, non-α7 subtype of nicotinic receptors in the substantia gelatinosa of adult rat spinal cord. Pain 2003, 101: 13–23. 10.1016/S0304-3959(02)00074-X Genzen JR, McGehee DS: Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res 2005, 1031: 229–237. 10.1016/j.brainres.2004.10.042 Willis WD, Coggeshall RE: Sensory Mechanisms of the Spinal Cord. 2nd edition. New York: Plenum; 1991. Woolf CJ, King AE: Physiology and morphology of multireceptive neurons with C-afferent fiber inputs in the deep dorsal horn of the rat lumbar spinal cord. J Neurophysiol 1987, 58: 460–479. Singer S, Rossi S, Verzosa S, Hashim A, Lonow R, Cooper T, Sershen H, Lajtha A: Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem Res 2004,29(9):1779–92. 10.1023/B:NERE.0000035814.45494.15 McGehee DS, Heath MJ, Gelber S, Devay P, Role LW: Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995, 269: 1692–1696. 10.1126/science.7569895 Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, Mendelowitz D: Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons. J Neurophysiol 2003,89(5):2473–81. 10.1152/jn.00934.2002 Keiger CJ, Prevette D, Conroy WG, Oppenheim RW: Developmental expression of nicotinic receptors in the chick and human spinal cord. J Comp Neurol 2003, 455: 86–99. 10.1002/cne.10468 Lena C, Changeux JP, Mulle C: Evidence for "preterminal" nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 1993, 13: 2680–2688. Vincler M, Eisenach JC: Plasticity of spinal nicotinic acetylcholine receptors following spinal nerve ligation. Neurosci Res 2004,48(2):139–45. 10.1016/j.neures.2003.10.007 Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Lena C, Le Novere N, de Kerchove d'Exaerde A, Huchet M, Damaj MI, Changeux JP: Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 1999, 398: 805–810. 10.1038/19756 Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW: Distribution of α2, α3, α4, and β2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 1989, 284: 314–335. 10.1002/cne.902840212 Matsubayashi H, Alkondon M, Pereira EF, Swanson KL, Albuquerque EX: Strychnine: a potent competitive antagonist of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal neurons. J Pharmacol Exp Ther 1998, 284: 904–913. Garcia-Colunga J, Miledi R: Modulation of nicotinic acetylcholine receptors by strychnine. Proc Natl Acad Sci USA 1999, 30: 4113–4118. 10.1073/pnas.96.7.4113 Saitoh T, Ishida M, Maruyama M, Shinozaki H: A novel antagonist, phenylbenzene omega-phosphono-alpha-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord. Br J Pharmacol 1994, 113: 165–170. Bradaïa A, Trouslard J: Fast synaptic transmission mediated by α-bungarotoxin-sensitive nicotinic acetylcholine receptors in lamina X neurones of neonatal rat spinal cord. J Physiol 2002, 544: 727–739. 10.1113/jphysiol.2002.028894 Urban L, Willetts J, Murase K, Randic M: Cholinergic effects on spinal dorsal horn neurons in vitro: an intracellular study. Brain Res 1989, 500: 12–20. 10.1016/0006-8993(89)90294-1 Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW: Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci 1993, 13: 596–604. Rashid MH, Ueda H: Neuropathy-specific analgesic action of intrathecal nicotinic agonists and its spinal GABA-mediated mechanism. Brain Res 2002, 953: 53–62. 10.1016/S0006-8993(02)03270-5 Damaj MI, Meyer EM, Martin BR: The antinociceptive effects of α7 nicotinic agonists in an acute pain model. Neuropharmacol 2000, 39: 2785–2791. 10.1016/S0028-3908(00)00139-8 Li X, Eisenach JC: Nicotinic acetylcholine receptor regulation of spinal norepinephrine release. Anesthesiology 2002, 96: 1450–1456. 10.1097/00000542-200206000-00026 Todd AJ, Spike RC: The localization of classical transmitters and neuropeptides within neurons in laminae I–III of the mammalian spinal dorsal horn. Prog Neurobiol 1993, 41: 609–645. 10.1016/0301-0082(93)90045-T Rashid MH, Furue H, Yoshimura M, Ueda H: Tonic inhibitory role of alpha4beta2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain 2006,125(1–2):125–35. 10.1016/j.pain.2006.05.011 Olave MJ, Puri N, Kerr R, Maxwell DJ: Myelinated and unmyelinated primary afferent axons form contacts with cholinergic interneurons in the spinal dorsal horn. Exp Brain Res 2002,145(4):448–56. 10.1007/s00221-002-1142-5 Bowker RM, Westlund KN, Sullivan MC, Wilber JF, Coulter JD: Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Res 1983, 288: 33–48. 10.1016/0006-8993(83)90079-3 Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE: The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 1984, 229: 329–346. 10.1002/cne.902290305 Todd AJ: Immunohistochemical evidence that acetylcholine and glycine exist in different populations of GABAergic neurons in lamina III of rat spinal dorsal horn. Neuroscience 1991, 44: 741–746. 10.1016/0306-4522(91)90093-4 Baccei ML, Fitzgerald M: Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci 2004,24(20):4749–57. 10.1523/JNEUROSCI.5211-03.2004 Allain AE, Baïri A, Meyrand P, Branchereau P: Expression of the glycinergic system during the course of embryonic development in the mouse spinal cord and its co-localization with GABA immunoreactivity. J Comp Neurol 2006,496(6):832–46. 10.1002/cne.20967 Ataka T, Gu JG: Relationship between tonic inhibitory currents and phasic inhibitory activity in the spinal cord lamina II region of adult mice. Mol Pain 2006, 2;2: 36. 10.1186/1744-8069-2-36 Nakatsuka T, Ataka T, Kumamoto E, Tamaki T, Yoshimura M: Alteration in synaptic inputs through C-afferent fibers to substantia gelatinosa neurons of the rat spinal dorsal horn during postnatal development. Neuroscience 2000, 99: 549–556. 10.1016/S0306-4522(00)00224-4