The Yang-Mills equations over Riemann surfaces

The Royal Society - Tập 308 Số 1505 - Trang 523-615 - 1983
Michael Atiyah1, Raoul Bott2
1Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, U.K
2Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138 U.S.A.

Tóm tắt

The Yang-Mills functional over a Riemann surface is studied from the point of view of Morse theory. The main result is that this is a ‘perfect' functional provided due account is taken of its gauge symmetry. This enables topological conclusions to be drawn about the critical sets and leads eventually to information about the moduli space of algebraic bundles over the Riemann surface. This in turn depends on the interplay between the holomorphic and unitary structures, which is analysed in detail.

Từ khóa


Tài liệu tham khảo

Adams J. F. 1969 Lectures on Lie groups. New York: Benjamin.

Atiyah M. F., 1955, Complex fibre bundles and ruled surfaces, Soc., 5, 407

Atiyah M. F., 1957, Vector bundles over an elliptic curve, Soc., 7, 414r

Atiyah M. F. 1979 Geometry of Yang-Mills fields. Fermi Scuola Normale Pisa.

Atiyah M. F., 1982, Convexity and commuting, Soc., 14, 1

Atiyah M. F. & Bott R. 1980 Yang-Mills and bundles over algebraic curves. Geometry and analysis Patodi memorial volume of Indian Academy of Sciences.

10.1098/rspa.1978.0143

10.1307/mmj/1028998010

10.2307/2372843

Bourbaki N. 1968 Elements de mathematique groupes et algibres de Lie ch. 4- 6 . Paris: Hermann.

Desale U. V., 1975, Poincare polynomials of the variety of stable bundles, Annin, 216, 233

Donaldson 8 . K. 1983 A new proof of a theorem of Narasimhan and Seshadri. diffl Geom. (To appear.)

10.2307/1969889

Gieseker D. 1982 A degeneration of the moduli space of stable bundles. (To appear.)

Griffiths P. & Harris J. 1978 Principles of algebraic geometry. New York: Wiley.

10.2307/2372388

Harder G., 1970, Fine Bemerkung zu einer Arbeit von P, E. Newstead. Math., 242, 16

10.1007/BF01357141

10.2307/2372705

Kirwan F., 1982, Cohomology of quotient spaces C, R. Acad. Sci. Paris, 295, 261

Kostant B., 1973, On convexity, the Weyl group and the Iwasawa decomposition. scient Re. norm, sup, Paris, 6, 413

Marshall A. W. & Olkin I. 1979 Inequalities: theory of majorization and its applications. New York: Academic Press.

Mitter P. K., 1981, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory. Communs math, Phys., 79, 457

Mumford D. 1965 Geometric invariant theory. Berlin: Springer-Verlag.

Narasimhan M., 1979, Geometry of SU(2 ) gauge fields. Communs math, Phys., 67, 121

Narasimhan M. 8 . & Ramanan 8 . 1969 Moduli of vector bundles on compact Riemann surface Math 89 1201-1208. ' '

10.2307/1970710

Newstead P. E., 1972, Characteristic classes of stable bundles over an algebraic curve, Am. Math. Soc., 169, 337, 10.1090/S0002-9947-1972-0316452-9

Palais R. 1965 Foundations ofglobal non-linear analysis. New York: Benjamin.

10.1016/0040-9383(80)90032-4

10.1007/BF01578292

Ramanathan A., 1975, Stable principal bundles on a compact Riemann surface, Annin, 213, 129

Seshadri G. S., 1967, Space of unitary vector bundles on a compact Riemann surface, Math., 85, 303

Shatz 8 . S. 1977 The decomposition and specialization of algebraic families of vector bundles. Compositio math. 35 163-187.

10.2140/pjm.1959.9.585

Singer I. M., 1978, Some remarks on the Gribov ambiguity. Communs math, Phys., 60, 7

Uhlenbeck K. 1982 Connections with

Weil A., 1938, Generalisation des fonctions abeliennes. Lpbounds on curvature. Communs math, Phys., 83, 31

Math pares appl. 17 47-87.