The Use of 3D-Printing Technology in Calculus Education: Concept Formation Processes of the Concept of Derivative with Printed Graphs of Functions

Springer Science and Business Media LLC - Tập 6 Số 3 - Trang 320-339 - 2020
Frederik Dilling1, Ingo Witzke1
1Mathematics Education, University of Siegen, Herrengarten 3, 57072, Siegen, Germany

Tóm tắt

Abstract3D-printing technology has become increasingly important in recent years, offering many possibilities for mathematics teaching and learning. From our point of view, the field of calculus seems to be particularly suitable for the use of 3D-printing. Using the example of 3D-printed graphs of functions, the use of this technology in calculus is discussed within the three approaches of Grundvorstellungen, Subjective Domains of Experience and Empirical Theories. An empirical study, based on the qualitative content analysis according to Philipp Mayring, examines the influence of the models on concept formation processes in the context of derivatives. The focus is on the following research question: “What are the characteristics of concept formation processes of the concept of derivative in the context of 3D-printed graphs of functions?”

Từ khóa


Tài liệu tham khảo

Arzarello, F., Bartolini Bussi, M., Leung, A., Mariotti, M., & Stevenson, I. (2012). Experimental approaches to theoretical thinking: Artefacts and proofs. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education (pp. 97–143). Dordrecht: Springer.

Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und -lehrens. In H. Bauersfeld, H. Bussmann, G. Krummheuer, J. Lorenz, & J. Voigt (Eds.), Lernen und Lehren von Mathematik: Analysen zum Unterrichtshandeln II (pp. 1–56). Köln: Aulis.

Burscheid, H., & Struve, H. (2010). Mathematikdidaktik in Rekonstruktion: Ein Beitrag zu ihrer Grundlegung. Berlin: Franzbecker.

Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. In J. Kaput, A. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education (pp. 114–162). Washington, DC: Mathematical Association of America.

Dilling, F. (2019). Der Einsatz der 3D-Druck-Technologie im Mathematikunterricht: Theoretische Grundlagen und exemplarische Anwendungen für die Analysis. Wiesbaden: Springer.

Dilling, F., & Witzke, I. (2018). 3D-printing-technology in mathematics education: examples from the calculus. Vietnam Journal of Education, 2(5), 54–58.

Dresing, T., & Pehl, T. (2015). Praxisbuch Interview, Transkription&Analyse: Anleitungen und Regelsysteme für qualitative Forschung. Marburg: Eigenverlag.

Dubinsky, E., & Harel, G. (Eds.). (1992). The concept of function: Aspects of pedagogy and epistemology. Washington, DC: The MathematicalAssociationofAmerica.

Gibson, I., Rosen, D., & Stucker, B. (2014). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. New York: Springer.

Gopnik, A., & Meltzoff, A. (1997). Words, thoughts and theories. Cambridge: MIT Press.

Greefrath, G., Oldenburg, R., Siller, H.-S., Ulm, V., & Weigand, H.-G. (2016). Aspects and “Grundvorstellungen” of the concepts of derivative and integral: Subject-matter-related didactical perspectives of concept formation. Journal fürMathematik-Didaktik, 37(1), 99–129.

Halverscheid, S. & Labs, O. (2019). Felix Klein’s mathematical heritage seen through 3D models. In H.-G. Weigand, W. McCallum, M. Menghini, M. Neubrand& G. Schubring (Eds), The legacy of Felix Klein (pp. 131–152). Cham: Springer.

Hirst, K. (1972). Derivatives and tangents. Educational Studies in Mathematics, 4(3), 299–305.

Hofmann, J., Thormählen, T., & Büttner, K. (2018). 3D-Druck zur haptischen Darstellung von Grafiken und Graphen in der Blinden- und Sehbehindertenpädagogik. In R. Daschelt & G. Weber (Eds.), Mensch und Computer 2018 – Tagungsband (pp. 273–277). Bonn: Gesellschaft für Informatik e.V.

Hußmann, S., Rezat, S., & Sträßer, R. (2016). Subject-matter didactics in mathematics education. Journal für Mathematik-Didaktik, 37(1), 1–9.

Klein, F. (1927/1978). Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Berlin: Springer.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

Malle, G. (2000). Zwei Aspekte von Funktionen: Zuordnung und Kovariation. MathematikLehren, 103, 8–11.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research, 1(2), (20). (http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204). Accessed 4/5/2019.

Mayring, P. (2010). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Basel: Beltz.

Ng, O.-L. (2017). Exploring the use of 3D computer-aided design and 3D printing for STEAM learning in mathematics. Digital Experiences in Mathematics Education, 3(3), 257–263.

Ng, O.-L. & Sinclair, N. (2018). Drawing in space: Doing mathematics with 3D pens. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach& C. Vale. (Eds), Uses of technology in primary and secondary mathematics education: Tools, topics and trends (pp. 301–313). Cham: Springer.

Ng, O.-L., Sinclair, N., & Davis, B. (2018). Drawing off the page: How new 3D technologies provide insight into cognitive and pedagogical assumptions about mathematics. The Mathematics Enthusiast, 15(3), 563–577.

Panorkou, N., & Pratt, D. (2016). Using Google SketchUp to develop students’ experiences of dimension in geometry. Digital Experiences in Mathematics Education, 2(3), 199–227.

Tall, D. (1985). Understanding the calculus. Mathematics Teaching, 110, 49–53.

Tall, D. (2003). Using technology to support an embodied approach to learning concepts in mathematics. In L. Carvalho & L. Guimaraes (Eds.), História e tecnologia no ensino da matemática (Vol. 1, pp. 1–28). Rio de Janeiro: Cincia Moderna.

Tall, D. (2013). How humans learn to think mathematically. Cambridge: Cambridge University Press.

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

Thompson, P., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421–456). Reston, VA: National Council of Teachers of Mathematics.

Tiedemann, K. (2016) “Ich habe mir einfach die Rechenmaschine in meinen Kopf gebaut!” Zur Entwicklung fachsprachlicher Fähigkeiten bei Grundschulkindern. Beiträge zum Mathematikunterricht 2016 (pp. 991–994). Münster, Germany: WTM-Verlag.

Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356–366.

Vollrath, H.-J. (1989). FunktionalesDenken. Journal für Mathematik-Didaktik, 10(1), 3–37.

vom Hofe, R. (1995a). Grundvorstellungen mathematischer Inhalte. Heidelberg: Spektrum.

vom Hofe, R. (1995b). Vorschläge zur Öffnung normativer Grundvorstellungskonzepte für deskriptive Arbeitsweisen in der Mathematikdidaktik. In H.-G. Steiner & H.-J. Vollrath (Eds.), Neue problem- und praxisbezogene Forschungsansätze (pp. 42–49). Köln: Aulis.

vom Hofe, R., & Blum, W. (2016). Grundvorstellungen als stoffdidaktische Kategorie. Journal für Mathematik-Didaktik, 37(1), 225–254.

Witzke, I. (2014). Zur Problematik der empirisch-gegenständlichen Analysis des Mathematikunterrichtes. Der Mathematikunterricht, 60(2), 19–31.

Witzke, I. & Hoffart, E. (2018). 3D-Drucker: Eine Idee für den Mathematikunterricht? BeiträgezumMathematikunterricht 2018 (pp. 2015–2018). Münster: WTM-Verlag.

Witzke, I., & Spies, S. (2016). Domain-specific beliefs of school calculus. Journal für Mathematik-Didaktik, 37(1), 131–161.