The UPS in diabetes and obesity
Tóm tắt
Type 2 diabetes is caused by defects in both insulin signaling and insulin secretion. Though the role of the ubiquitin proteasome system (UPS) in the pathogenesis of type 2 diabetes remains largely unexplored, the few examples present in the literature are interesting and suggest targets for drug development. Studies indicate that insulin resistance can be induced by stimulating the degradation of important molecules in the insulin signaling pathway, in particular the insulin receptor substrate proteins IRS1, IRS2 and the kinase AKT1 (Akt). In addition, a defect in insulin secretion could occur due to UPS-mediated degradation of IRS2 in the β-cells of the pancreas. The UPS also appears to be involved in regulating lipid synthesis in adipocytes and lipid production by the liver and could influence the development of obesity. Other possible mechanisms for inducing defects in insulin signaling and secretion remain to be explored, including the role of ubiquitylation in insulin receptor internalization and trafficking. Republished from Current BioData's Targeted Proteins database (TPdb;
http://www.targetedproteinsdb.com
).
Tài liệu tham khảo
Prentice AM: The emerging epidemic of obesity in developing countries. Int J Epidemiol. 2006, 35: 93-99. 10.1093/ije/dyi272.
Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature. 2001, 414: 782-787. 10.1038/414782a.
Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon MJ, Cushman SW, Holman GD: Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem. 1993, 268: 17820-17829.
James DE, Strube M, Mueckler M: Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989, 338: 83-87. 10.1038/338083a0.
Buse JB, Polonsky KS, Burant CF: Type 2 Diabetes Mellitus. Williams Textbook of Endocrinology. Edited by: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS. 2003, Philadelphia: Saunders, 10
Frayn KN, Arner P, Yki-Jarvinen H: Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006, 42: 89-103. 10.1042/bse0420089.
Liu Z, Long W, Fryburg DA, Barrett EJ: The regulation of body and skeletal muscle protein metabolism by hormones and amino acids. J Nutr. 2006, 136: 212S-217S.
Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001, 414: 799-806. 10.1038/414799a.
Association AD: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2006, 29 (Suppl 1): S43-48.
Trujillo ME, Scherer PE: Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006, 27: 762-778.
Krook A, Brueton L, O'Rahilly S: Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet. 1993, 342: 277-278. 10.1016/0140-6736(93)91820-C.
Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC: Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet. 1992, 1: 11-15. 10.1038/ng0492-11.
Taniguchi CM, Emanuelli B, Kahn CR: Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006, 7: 85-96. 10.1038/nrm1837.
Kasuga M, Fujita-Yamaguchi Y, Blithe DL, Kahn CR: Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc Natl Acad Sci USA. 1983, 80: 2137-2141. 10.1073/pnas.80.8.2137.
Thirone AC, Huang C, Klip A: Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab. 2006, 17: 72-78. 10.1016/j.tem.2006.01.005.
Backer JM, Myers MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J, et al.: Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992, 11: 3469-3479.
Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G: Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003, 11: 1457-1466. 10.1016/S1097-2765(03)00220-X.
Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C, Capeau J: Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene. 2001, 20: 252-259. 10.1038/sj.onc.1204064.
Jefferson LS, Li JB, Rannels SR: Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J Biol Chem. 1977, 252: 1476-1483.
Carel K, Kummer JL, Schubert C, Leitner W, Heidenreich KA, Draznin B: Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. J Biol Chem. 1996, 271: 30625-30630. 10.1074/jbc.271.26.15311.
Liang L, Jiang J, Frank SJ: Insulin receptor substrate-1-mediated enhancement of growth hormone-induced mitogen-activated protein kinase activation. Endocrinology. 2000, 141: 3328-3336. 10.1210/en.141.9.3328.
Skolnik EY, Batzer A, Li N, Lee CH, Lowenstein E, Mohammadi M, Margolis B, Schlessinger J: The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science. 1993, 260: 1953-1955. 10.1126/science.8316835.
Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ, Backer JM, Ullrich A, White MF, et al.: The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993, 12: 1929-1936.
MacDonald PE, Joseph JW, Rorsman P: Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci. 2005, 360: 2211-2225. 10.1098/rstb.2005.1762.
Wiederkehr A, Wollheim CB: Minireview: implication of mitochondria in insulin secretion and action. Endocrinology. 2006, 147: 2643-2649. 10.1210/en.2006-0057.
Biddinger SB, Kahn CR: From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006, 68: 123-158. 10.1146/annurev.physiol.68.040104.124723.
Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL: Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest. 1995, 95: 2195-2204. 10.1172/JCI117909.
Caro JF, Ittoop O, Pories WJ, Meelheim D, Flickinger EG, Thomas F, Jenquin M, Silverman JF, Khazanie PG, Sinha MK: Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity. J Clin Invest. 1986, 78: 249-258. 10.1172/JCI112558.
Tanti JF, Gremeaux T, van Obberghen E, Le Marchand-Brustel Y: Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem. 1994, 269: 6051-6057.
Lee YH, White MF: Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004, 27: 361-370.
Sun XJ, Goldberg JL, Qiao LY, Mitchell JJ: Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes. 1999, 48: 1359-1364. 10.2337/diabetes.48.7.1359.
Rui L, Fisher TL, Thomas J, White MF: Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem. 2001, 276: 40362-40367.
Rui L, Yuan M, Frantz D, Shoelson S, White MF: SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002, 277: 42394-42398. 10.1074/jbc.C200444200.
Kamura T, Sato S, Haque D, Liu L, Kaelin WG, Conaway RC, Conaway JW: The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 1998, 12: 3872-3881. 10.1101/gad.12.24.3872.
Shoelson SE, Lee J, Goldfine AB: Inflammation and insulin resistance. J Clin Invest. 2006, 116: 1793-1801. 10.1172/JCI29069.
Perreault M, Marette A: Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001, 7: 1138-1143. 10.1038/nm1001-1138.
Sugita H, Fujimoto M, Yasukawa T, Shimizu N, Sugita M, Yasuhara S, Martyn JA, Kaneki M: Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J Biol Chem. 2005, 280: 14203-14211. 10.1074/jbc.M411226200.
Medina EA, Afsari RR, Ravid T, Castillo SS, Erickson KL, Goldkorn T: Tumor necrosis factor-{alpha} decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology. 2005, 146: 2726-2735. 10.1210/en.2004-1074.
Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J, Montminy M: Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature. 2007, 449: 366-369. 10.1038/nature06128.
Posner BI: Regulation of insulin receptor kinase activity by endosomal processes: possible areas for therapeutic intervention. Curr Opin Investig Drugs. 2003, 4: 430-434.
Hicke L, Dunn R: Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol. 2003, 19: 141-172. 10.1146/annurev.cellbio.19.110701.154617.
Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC: The Tyrosine Kinase Negative Regulator c-Cbl as a RING-Type, E2-Dependent Ubiquitin-Protein Ligase. Science. 1999, 286: 309-312. 10.1126/science.286.5438.309.
Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A, Jovin T, Yarden Y: A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. Embo J. 2002, 21: 303-313. 10.1093/emboj/21.3.303.
Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M: Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001, 8: 995-1004. 10.1016/S1097-2765(01)00378-1.
Mori S, Claesson-Welsh L, Okuyama Y, Saito Y: Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem Biophys Res Commun. 1995, 213: 32-39. 10.1006/bbrc.1995.2094. PMID: 7639752
Vecchione A, Marchese A, Henry P, Rotin D, Morrione A: The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol. 2003, 23: 3363-3372. 10.1128/MCB.23.9.3363-3372.2003.
Andoniou CE, Thien CB, Langdon WY: Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. Embo J. 1994, 13: 4515-4523.
Peschard P, Park M: Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell. 2003, 3: 519-523. 10.1016/S1535-6108(03)00136-3.
Molero JC, Waring SG, Cooper A, Turner N, Laybutt R, Cooney GJ, James DE: Casitas b-lineage lymphoma-deficient mice are protected against high-fat diet-induced obesity and insulin resistance. Diabetes. 2006, 55: 708-715. 10.2337/diabetes.55.03.06.db05-0312.
Lopez-Avalos MD, Duvivier-Kali VF, Xu G, Bonner-Weir S, Sharma A, Weir GC: Evidence for a role of the ubiquitin-proteasome pathway in pancreatic islets. Diabetes. 2006, 55: 1223-1231. 10.2337/db05-0450.
Kawaguchi M, Minami K, Nagashima K, Seino S: Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion. J Biol Chem. 2006, 281: 13015-13020. 10.1074/jbc.M601228200.
Casas S, Gomis R, Gribble FM, Altirriba J, Knuutila S, Novials A: Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic beta-cell apoptosis. Diabetes. 2007, 56: 2284-2294. 10.2337/db07-0178.
Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH: Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes. 2007, 56: 930-939. 10.2337/db06-1160.
Yan FF, Lin CW, Cartier EA, Shyng SL: Role of ubiquitin-proteasome degradation pathway in biogenesis efficiency of {beta}-cell ATP-sensitive potassium channels. Am J Physiol Cell Physiol. 2005, 289: C1351-1359. 10.1152/ajpcell.00240.2005.
Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ: Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem. 2005, 280: 2282-2293. 10.1074/jbc.M412179200.
Liuwantara D, Elliot M, Smith MW, Yam AO, Walters SN, Marino E, McShea A, Grey ST: Nuclear factor-kappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes. 2006, 55: 2491-2501. 10.2337/db06-0142.
Donaldson WE: Regulation of fatty acid synthesis. Fed Proc. 1979, 38: 2617-2621. PMID: 40828
Qi L, Heredia JE, Altarejos JY, Screaton R, Goebel N, Niessen S, Macleod IX, Liew CW, Kulkarni RN, Bain J, et al.: TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science. 2006, 312: 1763-1766. 10.1126/science.1123374.
Fisher EA, Zhou M, Mitchell DM, Wu X, Omura S, Wang H, Goldberg AL, Ginsberg HN: The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J Biol Chem. 1997, 272: 20427-20434. 10.1074/jbc.272.33.20427.
Levy E, Spahis S, Ziv E, Marette A, Elchebly M, Lambert M, Delvin E: Overproduction of intestinal lipoprotein containing apolipoprotein B-48 in Psammomys obesus: impact of dietary n-3 fatty acids. Diabetologia. 2006, 49: 1937-1945. 10.1007/s00125-006-0315-3.
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999, 96: 857-868. 10.1016/S0092-8674(00)80595-4.
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al.: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001, 294: 1704-1708. 10.1126/science.1065874.
Khal J, Hine AV, Fearon KC, Dejong CH, Tisdale MJ: Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol. 2005, 37: 2196-2206. 10.1016/j.biocel.2004.10.017.
Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP: Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006, 576: 923-933. 10.1113/jphysiol.2006.116715.
Ogawa T, Furochi H, Mameoka M, Hirasaka K, Onishi Y, Suzue N, Oarada M, Akamatsu M, Akima H, Fukunaga T, et al.: Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest. Muscle Nerve. 2006, 34: 463-469. 10.1002/mus.20611.
Tiao G, Hobler S, Wang JJ, Meyer TA, Luchette FA, Fischer JE, Hasselgren PO: Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest. 1997, 99: 163-168. 10.1172/JCI119143.
Rome S, Clement K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS, Riou JP, Laville M, Vidal H: Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem. 2003, 278: 18063-18068. 10.1074/jbc.M300293200.
Bennett RG, Fawcett J, Kruer MC, Duckworth WC, Hamel FG: Insulin inhibition of the proteasome is dependent on degradation of insulin by insulin-degrading enzyme. J Endocrinol. 2003, 177: 399-405. 10.1677/joe.0.1770399.
Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D: A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem. 2004, 279: 27233-27238. 10.1074/jbc.M402273200.
Li M, Guo D, Isales CM, Eizirik DL, Atkinson M, She JX, Wang CY: SUMO wrestling with type 1 diabetes. J Mol Med. 2005, 83: 504-513. 10.1007/s00109-005-0645-5.
Leibel RL: Single gene obesities in rodents: possible relevance to human obesity. J Nutr. 1997, 127: 1908S-
Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, Hess JF: Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996, 13: 18-19. 10.1038/ng0596-18.
Schreyer SA, Wilson DL, LeBoeuf RC: C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis. 1998, 136: 17-24. 10.1016/S0021-9150(97)00165-2.
Chen D, Wang MW: Development and application of rodent models for type 2 diabetes. Diabetes Obes Metab. 2005, 7: 307-317. 10.1111/j.1463-1326.2004.00392.x.
Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER, Li MZ, Hannon GJ, Sorger PK, et al.: Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature. 2007, 446: 876-881. 10.1038/nature05694.
Xu X, Sarikas A, Dias-Santagata DC, Dolios G, Lafontant PJ, Tsai SC, Zhu W, Nakajima H, Nakajima HO, Field LJ, Wang R, Pan ZQ: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 2008, 30 (4): 403-414. 10.1016/j.molcel.2008.03.009.
Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).