Tỷ lệ Đặc hiệu Vận chuyển (Transport Specificity Ratio): Một công cụ cấu trúc-chức năng để tìm kiếm trong cấu trúc protein các vị trí điều khiển độ ổn định của trạng thái chuyển tiếp trong xúc tác vận chuyển qua màng

Steven C King1
1Integrative Biosciences, Oregon Health & Science University, Portland, USA

Tóm tắt

Trong việc thiết lập mối quan hệ cấu trúc-chức năng cho các protein vận chuyển qua màng, việc giải thích những thay đổi về kiểu hình có thể gặp phải nhiều vấn đề, do những bất định liên quan đến mức độ biểu hiện protein, định vị tiểu bào quan và độ chính xác trong gập protein. Một thử nghiệm vận chuyển cạnh tranh hai đánh dấu gọi là "Phân tích Tỷ lệ Đặc hiệu Vận chuyển" (Transport Specificity Ratio - TSR) đã được phát triển, đơn giản để thực hiện và vượt qua được "vấn đề biểu hiện", cung cấp một kiểu hình TSR đáng tin cậy (một hằng số) để so sánh với các protein vận chuyển khác. Sử dụng protein mang GABA (4-aminobutyrate) permease (GabP) của Escherichia coli làm mô hình, nghiên cứu cho thấy kiểu hình TSR chủ yếu không phụ thuộc vào điều kiện thử nghiệm, thể hiện: (i) không nhạy cảm với nồng độ chất nền cụ thể được sử dụng, (ii) không nhạy cảm với những thay đổi cực đoan (40 lần) trong mức biểu hiện của protein vận chuyển, và trong giới hạn rộng (iii) không nhạy cảm với thời gian thử nghiệm. Những cơ sở lý thuyết của phân tích TSR dự đoán tất cả những quan sát trên, hỗ trợ rằng TSR có (i) khả năng áp dụng trong phân tích vận chuyển qua màng, và (ii) tính hữu dụng đặc biệt đối với những thông tin không đầy đủ về mức độ biểu hiện protein và khoảng thời gian phản ứng ban đầu (ví dụ, trong các tình huống sàng lọc quy mô lớn). TSR đã được sử dụng để xác định các biến thể gab permease (GabP) thể hiện những thay đổi tương đối trong độ đặc hiệu xúc tác (kcat/Km) cho [14C]GABA (4-aminobutyrate) so với [3H]NA (acid nipecotic). Kiểu hình TSR là một hằng số dễ đo lường phản ánh những đặc tính phân tử bẩm sinh của trạng thái chuyển tiếp, và cung cấp một chỉ số đáng tin cậy về sự khác biệt trong độ đặc hiệu xúc tác mà một protein mang thể hiện đối với một cặp chất nền cụ thể. Một sự thay đổi trong kiểu hình TSR, được gọi là Δ(TSR), đại diện cho sự dịch chuyển độ đặc hiệu do những thay đổi cơ bản trong năng lượng liên kết chất nền nội tại (ΔGb) mà các xúc tác chuyển động dựa vào để giảm năng lượng kích hoạt. Do đó, phân tích TSR là một công cụ cấu trúc-chức năng cho phép quét một cách tiết kiệm cho các vị trí trong cấu trúc protein liên kết với trạng thái chuyển tiếp, tạo ra độ ổn định và do đó phục vụ như những yếu tố chức năng của sức mạnh xúc tác (hiệu quả, hoặc độ đặc hiệu).

Từ khóa


Tài liệu tham khảo

Benkovic SJ, Hammes-Schiffer S: A perspective on enzyme catalysis. Science. 2003, 301: 1196-1202. 10.1126/science.1085515.

Jencks WP: Binding energy, specificity, and enzymic catalysis: the Circe effect. Adv Enzymol. 1975, 43: 219-410.

Krupka RM: Role of substrate binding forces in exchange-only transport systems: I. Transition-state theory. J Membr Biol. 1989, 109: 151-158.

Petsko GA, Ringe D: Stabilization of Transition States and Exclusion of Water. Protein Structure and Function. 2004, London, New Science Press, 68-

King SC, Brown-Istvan L: Use of the "Transport Specificity Ratio" and Cysteine-Scanning Mutagenesis to Identify Multiple Substrate Specificity Determinants within the "Consensus Amphipathic Region" of the Escherichia coli GABA Transporter encoded by gabP. Biochem J. 2003, 376: 633-644. 10.1042/BJ20030594.

King SC, Hu LA, Pugh A: Induction of Substrate Specificity Shifts by Placement of Alanine Insertions within the Consensus Amphipathic Region of the Escherichia coli GABA Transporter encoded by gabP. Biochem J. 2003, 376: 645-653. 10.1042/BJ20030595.

Fersht A: Enzyme-substrate complementarity and the use of binding energy in catalysis. Enzyme Structure and Mechanism. 1985, New York, W. H. Freeman and Company, 311-346. second

King SC, Fleming SR, Brechtel CE: Ligand recognition properties of the Escherichia coli 4-aminobutyrate transporter encoded by gabP. Specificity of Gab permease for heterocyclic inhibitors. J Biol Chem. 1995, 270: 19893-19897. 10.1074/jbc.270.34.19893.

Brechtel CE, Hu L, King SC: Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP. Uptake and counterflow of structurally diverse molecules. J Biol Chem. 1996, 271: 783-788. 10.1074/jbc.271.2.783.

Brechtel CE, King SC: 4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis. Biochem J. 1998, 333: 565-571.

Agarwal PK, Billeter SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S: Network of coupled promoting motions in enzyme catalysis. Proc Natl Acad Sci U S A. 2002, 99: 2794-2799. 10.1073/pnas.052005999.

Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE: Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry. 2001, 40: 9846-9859. 10.1021/bi010621k.

Miller GP, Wahnon DC, Benkovic SJ: Interloop contacts modulate ligand cycling during catalysis by Escherichia coli dihydrofolate reductase. Biochemistry. 2001, 40: 867-875. 10.1021/bi001608n.

Rajagopalan PT, Lutz S, Benkovic SJ: Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates. Biochemistry. 2002, 41: 12618-12628. 10.1021/bi026369d.

Oue S, Okamoto A, Yano T, Kagamiyama H: Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem. 1999, 274: 2344-2349. 10.1074/jbc.274.4.2344.

Kimura S, Naito A, Tuzi S, Saito H: A (13)C NMR study on [3-(13)C]-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled transmembrane peptides of bacteriorhodopsin in lipid bilayers: insertion, rigid-body motions, and local conformational fluctuations at ambient temperature. Biopolymers. 2001, 58: 78-88. 10.1002/1097-0282(200101)58:1<78::AID-BIP80>3.0.CO;2-C.

Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG: Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996, 274: 768-770. 10.1126/science.274.5288.768.

Huang Y, Lemieux MJ, Song J, Auer M, Wang DN: Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003, 301: 616-620. 10.1126/science.1087619.

Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S: Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003, 301: 610-615. 10.1126/science.1088196.

Tanford C: Simple model for the chemical potential change of a transported ion in active transport. Proc Natl Acad Sci USA. 1982, 79: 2882-2884.

Tanford C: Chemical potential of bound ligand, an important parameter for free energy transduction. Proc Natl Acad Sci USA. 1981, 78: 270-273.

King SC, Wilson TH: Toward understanding the structural basis of "forbidden" transport pathways in the Escerichia coli lactose carrier: mutations probing the energy barriers to uncoupled transport. Mol Microbiol. 1990, 4: 1433-1438.

Colquhoun D: Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol. 1998, 125: 924-947.

Hu LA, King SC: Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8-9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem J. 1998, 330: 771-776.

Hu LA, King SC: Functional significance of the "signature cysteine" in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amine-polyamine-choline superfamily: Restoration of Cys-300 to the Cys-less GabP. J Biol Chem. 1998, 273: 20162-20167. 10.1074/jbc.273.32.20162.