The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis
Tóm tắt
Tài liệu tham khảo
Adelman, M.A.: International oil agreements. Energy J (1984). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol5-No3
Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Modeling and forecasting realized volatility. Econometrica 71(2), 579–625 (2003). https://doi.org/10.1111/1468-0262.00418
Apergis, N., Lau, M.C.K., Yarovaya, L.: Media sentiment and CDS spread spillovers: evidence from the GIIPS countries. Int. Rev. Financ. Anal. 47, 50–59 (2016). https://doi.org/10.1016/j.irfa.2016.06.010
Baruník, J., Křehlík, T.: Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Economet. 16(2), 271–296 (2018). https://doi.org/10.1093/jjfinec/nby001
Baruník, J., Kočenda, E., Vácha, L.: Asymmetric connectedness on the US stock market: bad and good volatility spillovers. J. Financ. Mark. 27, 55–78 (2016). https://doi.org/10.1016/j.finmar.2015.09.003
Bouri, E., Cepni, O., Gabauer, D., Gupta, R.: Return connectedness across asset classes around the COVID-19 outbreak. Int. Rev. Financ. Anal. 73, 101646 (2021). https://doi.org/10.1016/j.irfa.2020.101646
BP Statistical Review of World Energy (2019). https://www.bp.com/zh_cn/china/reports-and-publications/_bp_2019-_.html
Cai, Y., Chou, R.Y., Li, D.: Explaining international stock correlations with CPI fluctuations and market volatility. J. Bank. Finance 33(11), 2026–2035 (2009). https://doi.org/10.1016/j.jbankfin.2009.05.013
Chang, C.L., McAleer, M., Tansuchat, R.: Crude oil hedging strategies using dynamic multivariate GARCH. Energy Econ. 33(5), 912–923 (2011). https://doi.org/10.1016/j.eneco.2011.01.009
Dai, Y.H., Xie, W.J., Jiang, Z.Q., Jiang, G.J., Zhou, W.X.: Correlation structure and principal components in the global crude oil market. Emp. Econ. 51(4), 1501–1519 (2016). https://doi.org/10.1007/s00181-015-1057-1
Diebold, F.X., Yilmaz, K.: Better to give than to receive: predictive directional measurement of volatility spillovers. Int. J. Forecast. 28(1), 57–66 (2012). https://doi.org/10.1016/j.ijforecast.2011.02.006
Ding, Z., Liu, Z., Zhang, Y., Long, R.: The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment. Appl. Energy 187, 27–36 (2017). https://doi.org/10.1016/j.apenergy.2016.11.037
Eun, C.S., Shim, S.: International transmission of stock market movements. J. Financ. Quant. Anal. (1989). https://doi.org/10.2307/2330774
Forbes, K.J., Rigobon, R.: No contagion, only interdependence: measuring stock market comovements. J. Financ. 57(5), 2223–2261 (2002). https://doi.org/10.1111/0022-1082.00494
Friendly, M.: Corrgrams: exploratory displays for correlation matrices. Am. Stat. 56(4), 316–324 (2002). https://doi.org/10.1198/000313002533
Gulen, S.G.: Regionalization in the world crude oil market: further evidence. Energy J. (1999). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol20-No1-7
Han, L., Kordzakhia, N., Trück, S.: Volatility spillovers in Australian electricity markets. Energy Econ. 90, 104782 (2020). https://doi.org/10.1016/j.eneco.2020.104782
Ji, Q., Fan, Y.: Dynamic integration of world oil prices: a reinvestigation of globalisation vs. regionalisation. Appl. Energy 155, 171–180 (2015). https://doi.org/10.1016/j.apenergy.2015.05.117
Ji, Q., Zhang, D.: China’s crude oil futures: introduction and some stylized facts. Financ. Res. Lett. 28, 376–380 (2019). https://doi.org/10.1016/j.frl.2018.06.005
Jin, X., Lin, S.X., Tamvakis, M.: Volatility transmission and volatility impulse response functions in crude oil markets. Energy Econ 34(6), 2125–2134 (2012). https://doi.org/10.1016/j.eneco.2012.03.003
Kleit, A.N.: Are regional oil markets growing closer together? An arbitrage cost approach. Energy J. (2001). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol22-No2-1
Korobilis, D., Yilmaz, K.: Measuring dynamic connectedness with large Bayesian VAR models (2018). https://doi.org/10.2139/ssrn.3099725
Kuck, K., Schweikert, K.: A Markov regime-switching model of crude oil market integration. J. Commod. Mark. 6, 16–31 (2017). https://doi.org/10.1016/j.jcomm.2017.03.001
Milonas, N.T., Henker, T.: Price spread and convenience yield behaviour in the international oil market. Appl. Financ. Econ. 11(1), 23–36 (2001). https://doi.org/10.1080/09603100150210237
Schotman, P.C., Zalewska, A.: Non-synchronous trading and testing for market integration in Central European emerging markets. J. Empir. Financ. 13(4–5), 462–494 (2006). https://doi.org/10.1016/j.jempfin.2006.04.002
Wei, Y., Qin, S., Li, X., Zhu, S., Wei, G.: Oil price fluctuation, stock market and macroeconomic fundamentals: evidence from China before and after the financial crisis. Financ. Res. Lett. 30, 23–29 (2019). https://doi.org/10.1016/j.frl.2019.03.028
Weiner, R.J.: Is the world oil market. Energy J. (1991). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol12-No3-7
Wen, X., Wei, Y., Huang, D.: Measuring contagion between energy market and stock market during financial crisis: a copula approach. Energy Econ. 34(5), 1435–1446 (2012). https://doi.org/10.1016/j.eneco.2012.06.021
Reboredo, J.C.: How do crude oil prices co-move? A copula approach. Energy Econ. 33(5), 948–955 (2011). https://doi.org/10.1016/j.eneco.2011.04.006
Yang, J., Zhou, Y.: Return and volatility transmission between China’s and international crude oil futures markets: a first look. J. Futur. Mark. 40(6), 860–884 (2020). https://doi.org/10.1002/fut.22103
Zhang, B., Wang, P.: Return and volatility spillovers between china and world oil markets. Econ. Model. 42, 413–420 (2014). https://doi.org/10.1016/j.econmod.2014.07.013
Zhang, D.: Oil shocks and stock markets revisited: Measuring connectedness from a global perspective. Energy Econ. 62, 323–333 (2017). https://doi.org/10.1016/j.eneco.2017.01.009
Zhang, D., Broadstock, D.C.: Global financial crisis and rising connectedness in the international commodity markets. Int. Rev. Financ. Anal. (2018). https://doi.org/10.1016/j.irfa.2018.08.003