The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations

Mathematische Zeitschrift - Tập 250 - Trang 939-965 - 2005
Joshua S. Friedman1
1Department of Mathematics, Stony Brook University, Stony Brook, USA

Tóm tắt

For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification points to the zeta-function. In fact, if is the ring of Eisenstein integers, then the Selberg zeta-function of contains ramification points and is the sixth-root of a meromorphic function.

Tài liệu tham khảo

Colin de Verdière, Y.: Une nouvelle démonstration du prolongement méromorphe des séries d’Eisenstein. C. R. Acad. Sci. Paris Sér. I Math. 293(7), 361–363 (1981) Elstrodt, J., Grunewald, F., Mennicke, J.: Groups acting on hyperbolic space. Springer Monographs in Mathematics, Harmonic analysis and number theory. Springer-Verlag, Berlin, 1998 Faddeev, L.D.: The eigenfunction expansion of Laplace’s operator on the fundamental domain of a discrete group on the Lobačevskii plane. Transactions of the Moscow Mathematical Society for the year 1967 17, 357–386 (1969) Fischer, J.: An approach to the Selberg trace formula via the Selberg zeta-function. Lecture Notes in Mathematics, 1253, Springer-Verlag, Berlin, 1987 Friedman, J.: The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations. Ph.D. thesis, Stony Brook University, 2005 Gangolli, R.: Zeta functions of Selberg’s type for compact space forms of symmetric spaces of rank one. Illinois J. Math. 21 (1), 1–41 (1977) MR MR0485702 (58 #5524) Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceitlin. Translated from the Russian by Scripta Technica, Inc. Translation edited by Alan Jeffrey, Academic Press, New York, 1965 Gangolli, R., Warner, G.: Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one. Nagoya Math. J. 78, 1–44 (1980) Hejhal, D.A.: The Selberg trace formula for PSL(2, R). Vol. 2. Lecture Notes in Mathematics, Vol. 1001, Springer, Berlin, 1983 Iwaniec, H.: Spectral methods of automorphic forms. second ed., Graduate Studies in Mathematics, Vol. 53, American Mathematical Society, Providence, RI, 2002 Langlands, R.P.: On the functional equations satisfied by Eisenstein series. Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin, 1976 Lang, S.: Elliptic functions. second ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987, With an appendix by J. Tate. Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, II. Math. Ann. 167, 292–337 (1966); ibid. 168, 261–324 (1966) Sarnak, P.: Determinants of Laplacians. Comm. Math. Phys. 110(1), 113–120 (1987) Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. (N.S.) 20, 47–87 (1956) Selberg, A.: Collected papers. Vol. I. Springer-Verlag, Berlin, 1989, With a foreword by K. Chandrasekharan. Selberg, A.: Collected papers. Vol. II, Springer-Verlag, Berlin, 1991, With a foreword by K. Chandrasekharan. Siegel, C.L.: Advanced analytic number theory. second ed., Tata Institute of Fundamental Research Studies in Mathematics, Vol. 9, Tata Institute of Fundamental Research, Bombay, 1980. Venkov, A.B.: Spectral theory of automorphic functions. Proc. Steklov Inst. Math. (1982), no. 4(153), ix+163 pp. (1983), A translation of Trudy Mat. Inst. Steklov. 153 (1981)