The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes

American Association for the Advancement of Science (AAAS) - Tập 281 Số 5379 - Trang 956-961 - 1998
Shuji Nakamura1
1The author is in the Department of Research and Development, Nichia Chemical Industries, 491 Oka, Kaminaka, Anan, Tokushima 774, Japan. E-mail: [email protected]

Tóm tắt

REVIEW High-efficiency light-emitting diodes emitting amber, green, blue, and ultraviolet light have been obtained through the use of an InGaN active layer instead of a GaN active layer. The localized energy states caused by In composition fluctuation in the InGaN active layer are related to the high efficiency of the InGaN-based emitting devices. The blue and green InGaN quantum-well structure light-emitting diodes with luminous efficiencies of 5 and 30 lumens per watt, respectively, can be made despite the large number of threading dislocations (1 × 10 8 to 1 × 10 12 cm −2 ). Epitaxially laterally overgrown GaN on sapphire reduces the number of threading dislocations originating from the interface of the GaN epilayer with the sapphire substrate. InGaN multi-quantum-well structure laser diodes formed on the GaN layer above the SiO 2 mask area can have a lifetime of more than 10,000 hours. Dislocations increase the threshold current density of the laser diodes.

Từ khóa


Tài liệu tham khảo

Yoshida S., Misawa S., Gonda S., Appl. Phys. Lett. 42, 427 (1983).

Amano H., Sawaki N., Akasaki I., Toyoda T., ibid. 48, 353 (1986).

Reviewed by S. Nakamura and G. Fasol The Blue Laser Diode (Springer-Verlag Heidelberg ed. 1 1997).

Nakamura S., Jpn. J. Appl. Phys. 30, L1705 (1991).

S. Strite and H. Morkoç J. Vacuum Sci Technol. B 10 1237 (1992).

Ponce F. A., Bour D. P., Nature 386, 351 (1997).

Pankove J. I., Miller E. A., Berkeyheiser J. E., RCA Rev. 32, 383 (1971).

Pankove J. I., Duffy M. T., Miller E. A., Berkeyheiser J. E., J. Luminescence 8, 89 (1973).

Maruska H. P., Rhines W. C., Stevenson D. A., Mat. Res. Bull. 7, 777 (1972).

Lagerstedt O., Monemar B., J. Appl. Phys. 45, 2266 (1974).

Amano H., Kito M., Hiramatsu K., Akasaki I., Jpn. J. Appl. Phys. 28, L2112 (1989).

S. Nakamura T. Mukai M. Senoh

Iwasa N., ibid. 31, L139 (1992).

S. Nakamura N. Iwasa M. Senoh T. Mukai ibid. p. 1258.

Wang C., Davis R. F., Appl. Phys. Lett. 63, 990 (1993).

Rubin M., Newman N., Chan J. S., Fu T. C., Ross J. T., ibid. 64, 64 (1994).

M. S. Brandt N. M. Johnson R. J. Molnar R. Singh T. D. Moustakas ibid. p. 2264.

J. M. Zavada R. G. Wilson C. R. Abernathy S. J. Pearton ibid. p. 2724.

J. Neugebauer and C. Van De Walle Phys. Rev. B 50 8067 (1994).

Nagatomo T., Kuboyama T., Minamino H., Omoto O., Jpn. J. Appl. Phys. 28, L1334 (1989).

Matsuoka T., Tanaka H., Sasaki T., Katsui A., Inst. Phys. Conf. Ser. 106, 141 (1990).

Matsuoka T., J. Cryst. Growth 124, 433 (1992).

Nakamura S., Mukai T., Jpn. J. Appl. Phys. 31, L1457 (1992).

S. Nakamura T. Mukai M. Senoh S. Nagahama

Iwasa N., J. Appl. Phys. 74, 3911 (1993).

Chichibu S., Azuhata T., Sota T., Nakamura S., Appl. Phys. Lett. 69, 4188 (1996).

___, ibid. 70, 2822 (1997).

Y. Narukawa Y. Kawakami Sz. Fujita Sg. Fujita

Nakamura S., Phys. Rev. B55, 1938R (1997).

Narukawa Y., et al., Appl. Phys. Lett. 70, 981 (1997).

Chichibu S., Wada K., Nakamura S., ibid. 71, 2346 (1997).

S. Nakamura T. Mukai M. Senoh ibid. 64 1687 (1994).

Nakamura S., et al., Jpn. J. Appl. Phys. 34, L1332 (1995).

Mukai T., Morita D., Nakamura S., J. Crystal Growth 189/190, 778 (1998).

T. Mukai H. Narimatsu

Nakamura S., Jpn. J. Appl. Phys. 37, L479 (1998).

Nakamura S., et al., ibid. 35, L74 (1996).

K. Itaya et al. ibid. p. L1315.

Bulman G. E., et al., Electron. Lett. 33, 1556 (1997).

Mack M. P., et al., MRS Internet J. Nitride Semicond. Res. 2, 41 (1997);

. Available at .

Kuramata A., et al., Jpn J. Appl. Phys. 36, L1130 (1997).

F. Nakamura et al. in (31) p. LN-8.

Kneissl M., et al., Appl. Phys. Lett. 72, 1539 (1998).

H. Katoh et al. Jpn. J. Appl. Phys. 37 L 444 (1998).

Nakamura S., et al., Appl. Phys. Lett. 72, 211 (1998).

___, Jpn. J. Appl. Phys. 36, L1568 (1997).

___, ibid. 37, L627 (1998).

___ ibid. p. L309.

Lester S. D., Ponce F. A., Craford M. G., Steigerwald D. A., Appl. Phys. Lett. 66, 1249 (1995).

Kapolnek D., et al., ibid. 67, 1541 (1995).

Wu X. H., et al., Jpn. J. Appl. Phys. 35, L1648 (1996).

Heying B., et al., Appl. Phys. Lett. 68, 643 (1996).

B. Garni et al. ibid. p. 1380.

Rosner S. J., et al., ibid. 70, 420 (1997).

Weimann N. G., Eastman L. F., J. Appl. Phys. 83, 3656 (1998).

P. J. Hansen et al. Appl. Phys. Lett. 72 2247 (1998).

Qian W., et al., ibid. 67, 2284 (1995).

Wu X. H., et al., J. Appl. Phys. 80, 3228 (1996).

Tarsa E. J., et al., ibid. 82, 5472 (1997).

Ponce F. A., Bour D. P., Gotz W., Wright P. J., Appl. Phys. Lett. 68, 57 (1996).

Sasaoka C., et al., J. Crystal Growth 189/190, 61 (1998).

Osinsky A., et al., Appl. Phys. Lett. 71, 2334 (1997).

Wu X. H., et al., ibid. 72, 692 (1998).

Sato H., Sugahara T., Naoi Y., Sakai S., Jpn. J. Appl. Phys. 37, 2013 (1998).

S. Keller U. K. Mishra S. P. Denbaars W. Seifert ibid. p. L431.

Chen Y., et al., Appl. Phys. Lett. 72, 710 (1998).

P. A. Crowell D. K. Young S. Keller E. L. Hu D. D. Awschalom ibid. p. 927.

Sugahara T., et al., Jpn. J. Appl. Phys. 37, L398 (1998).

S Chichibu et al. in preparation.

McCluskey M. D., Van de Walle C. G., Master C. P., Romano L. T., Johnson N. M., Appl. Phys. Lett. 72, 2725 (1998).

Nakamura S., Mukai T., Senoh M., Jpn. J. Appl. Phys. 31, 2883 (1992).

___, ibid. 32, L16 (1993).

Nakamura S., IEEE J. Selective Top. Quantum Electron. 3, 712 (1997).

Smith D. L., Mailhiot C., Phys. Rev. Lett. 58, 1264 (1987).

Nardelli M. B., Rapcewicz K., Bernholc J., Appl. Phys. Lett. 71, 3135 (1997).

Takeuchi T., et al., Jpn. J. Appl. Phys. 36, L177 (1997).

S. Nakamura et al. ibid. p. L1059.

Sakai A., Sunakawa H., Usui A., Appl. Phys. Lett. 71, 2259 (1997).

T. S. Zheleva O. H. Nam M. D. Bremser R. F. Davis ibid. p. 2472.